Quantum Algorithms for Cryptanalysis and Post-Quantum Symmetric Cryptography

André Schrottenloher

June 23rd, 2022

The k-XOR Problem	Quantum Security of AES	Saturnin 000000	Conclusion
Cryptography			

Enable secure communications over insecure channels, at the lowest possible cost.

Asymmetric

O

- No shared secret
- Public-key schemes (RSA...), key-exchange protocols, signatures...

Symmetric

- Shared secret
- Block ciphers (AES...), stream ciphers, hash functions (SHA-3...)...

The k-XOR Problem	Quantum Security of AES	Saturnin 000000	Conclusion
Symmetric cryp	otography		

Example:

- After having shared a **secret key** k, Alice and Bob communicate using an encryption scheme
- The algorithm is based on a block cipher $E_k\ : \{0,1\}^n \to \{0,1\}^n$ (the primitive)
- They agree on the standard **AES-128**: $|\mathbf{k}| = 128$, $\mathbf{n} = 128$

The k-XOR Problem	Quantum Security of AES	Saturnin 000000	Conclusion OO
Security of prim	nitives		

The security of an **ideal** primitive is defined by **generic attacks**.

Generic key-recovery: "try all the keys"

- Given a few plaintext-ciphertext pairs, try all keys k and find the matching one. Costs 2^{|k|} encryptions.
- If |k| = 128: $2^{128} = approx$. 10^{22} core-years
- "128 bits of security"

- But AES is not ideal and its security can only be conjectured
- Cryptanalysis is our empirical measure of security
- If we find a better attack than generic, the cipher is broken (the conjecture is false)

- For long-term security, we need to take into account a **quantum adversary**
- By changing the notion of "computation", the status of our computational conjectures will **change**

The k-XOR	Problem
0000000)

Quantum Security of AES

Saturnin

Conclusion

The post-quantum world

What can this adversary do?

Asymmetric crypto

• Shor's algorithm breaks factorization and DL-based systems

Symmetric crypto

- Grover's algorithm accelerates exhaustive key-recovery to $\sqrt{2^{|k|}} = 2^{|k|/2}$
- So ideally, we should increase (double) the key sizes
- What else?

Shor, "Algorithms for Quantum Computation: Discrete Logarithms and Factoring", FOCS 1994

The k-XOR Problem	Quantum Security of AES	Saturnin	Conclusion
0000000	0000	000000	00

Quantum algorithms (feat. quantum search)

X a search space of size $2^{|k|}$, $f : X \to \{0, 1\}$, find the single $x_0 \in X$ such that f(x) = 1.

Classical (exhaustive) search

Repeat
$$2^{|k|}$$
 times
$$\begin{cases} \text{Sample } x \in X \\ \text{Test if } f(x) = 1 \end{cases}$$

Quantum search (Grover's algorithm)

$$\begin{array}{l} \text{Repeat } \mathcal{O}\left(\sqrt{2^{|k|}}\right) \text{ times} \begin{cases} \text{Sample } x \in X \rightarrow \text{quantumly} \\ \text{Test if } f(x) = 1 \rightarrow \text{quantumly} \end{cases} \\ \end{array}$$

 \implies we will treat it as a black box.

Grover, "A fast quantum mechanical algorithm for database search", STOC 96

The k-XOR Problem	Quantum Security of AES	Saturnin	Conclusion
0000000	0000	000000	00
<u> </u>			

Contributions

1. New algorithms for generic problems in cryptography

• Collisions and generalized collisions (k-XOR, k-SUM)

2. Quantum cryptanalysis of structured constructions

• New algorithmic tool: offline-Simon

3. Dedicated cryptanalysis

- Gimli, Spook (recent lightweight ciphers)
- Quantum security analysis of AES (spoiler: seems safe so far)

4. Design

 The Saturnin block cipher and algorithms (maximal security at a minimal cost)

The k-XOR Problem	Quantum Security of AES	Saturnin 000000	Conclusion
Outline			

1 Quantum Algorithms for the k-XOR Problem

Quantum Security of AES

The k-XOR Problem	Quantum Security of AES	Saturnin	Conclusion
0000000	0000	000000	00

Quantum Algorithms for the k-XOR Problem

The k-XOR Problem ○●○○○○○○	Quantum Security of AES	Saturnin 000000	Conclusion
k-XOR problem	(with many so	olutions)	

k-XOR

Let $H : \{0,1\}^n \to \{0,1\}^n$ be a random function, find x_1, \ldots, x_k such that $H(x_1) \oplus \ldots \oplus H(x_k) = 0$.

- Usually *H* is a known, keyless function (a hash function, a list of data)
- We have a quantum algorithm for H (quantum oracle access)

The query complexity

Classical: $2^{n/k}$ (trivial) Quantum: $2^{n/(k+1)}$ (not trivial)

[Belovs & Spalek]

We will be interested in the time complexity, which is usually much higher.

- We focus on the exponent: α_k in $\widetilde{\mathcal{O}}(2^{\alpha_k n})$
- All the results apply with + instead of \oplus (k-SUM)

The k-XOR Problem ○○●○○○○○	Quantum Security of AES	Saturnin 000000	Conclusion
Potential applic	cations		

Subset-sum: given *n* integers $\bar{a} = a_0, \dots a_{n-1}$ on poly(*n*) bits, find a binary \bar{e} such that $\bar{a} \cdot \bar{e} = 0 \implies$ reduces to k-SUM

Parity check problem: find a low-weight multiple of a polynomial \implies reduces to k-SUM

LPN: given samples $a, a \cdot s \oplus e$ with *n*-bit uniform random *a* and Bernoulli noise *e*, find $s \implies$ reduces to k-SUM

Multiple-encryption: given a few plaintext-ciphertext pairs $(x, E_{k_1} \circ \ldots \circ E_{k_r}(x))$, find the independent keys $k_1, \ldots k_r$ \implies similar algorithms applicable

The **merging** algorithms used for k-SUM also appear in generic information set decoding, lattice sieving or subset-sum algorithms.

The k-XOR Problem 000●0000

Quantum Security of AES

Saturnin 000000 Conclusion

2-XOR: collision search

Classical setting (naive)

- Store $2^{n/2}$ queries (x, H(x)) in a list \mathcal{L}_2
- 2 Enumerate a list \mathcal{L}_1 , looking for a collision with \mathcal{L}_2

Brassard, Høyer and Tapp, "Quantum Cryptanalysis of Hash and Claw-Free Functions", LATIN 98

Brassard, Høyer and Tapp, "Quantum Cryptanalysis of Hash and Claw-Free Functions", LATIN 98

The k-XOR Problem	Quantum Security of AES	Saturnin	Conclusion
0000●000		000000	00
Merging with k	= 4		

• Make 4 lists of $2^{n/3}$ queries (x, H(x))

Wagner, "A Generalized Birthday Problem", CRYPTO 2002

The k-XOR Problem 0000●000	Quantum Security of AES	Saturnin 000000	Conclusion
Merging with	k = 4		

• Make 4 lists of $2^{n/3}$ queries (x, H(x))

2 Merge into 2 lists of pairs (x, y) with n/3 zeroes in the sum $H(x) \oplus H(y)$

Wagner, "A Generalized Birthday Problem", CRYPTO 2002

The k-XOR Problem 0000●000	Quantum Security of AES	Saturnin 000000	Conclusion
Merging with k	= 4		

- Make 4 lists of $2^{n/3}$ queries (x, H(x))
- **Output** Merge into 2 lists of **pairs** with n/3 zeroes in the sum
- 3 Merge into 1 list of 4-tuples with n/3 + 2n/3 = n zeroes (4-XOR to zero)

Wagner, "A Generalized Birthday Problem", CRYPTO 2002

The k-XOR Problem 00000●00			Conclusion
		•	

Depth-first traversal of Wagner's tree

We **search** an element of \mathcal{L}_0

The k-XOR Problem 00000●00	Quantum Security of AES	Saturnin 000000	Conclusion
Depth-first tra	aversal of Wagne	er's tree	

We **search** an element of \mathcal{L}_0

 \implies We **search** an element of $\mathcal{L}_1 \bowtie \mathcal{L}_2$ that collides with $\mathcal{L}_3 \bowtie \mathcal{L}_4$

The k-XOR Problem 00000●00	Quantum Security of AES	Saturnin 000000	Conclusion
Depth-first tr	aversal of Wagne	er's tree	

Search an element of \mathcal{L}_0

 \implies Search an element of $\mathcal{L}_1 \bowtie \mathcal{L}_2$ that collides with $\mathcal{L}_3 \bowtie \mathcal{L}_4$

 $\implies \textbf{Search} \text{ an element of } \mathcal{L}_1 \text{ that yields an element of } \mathcal{L}_1 \bowtie \mathcal{L}_2 \text{ that} \\ \text{ collides with } \mathcal{L}_3 \bowtie \mathcal{L}_4$

The k-XOR ProblemQuantum Security of AES000000000000		Saturnin 000000	Conclusion
4-XOR example	9		

- Time $2^{n/6}$ for the **search**
- Time 2^{n/3} for the **intermediate lists**

Naya-Plasencia, S., "Optimal Merging in Quantum k-XOR and k-SUM Algorithms", EUROCRYPT 2020

The k-XOR Problem	Quantum Security of AES	Saturnin	Conclusion
000000●0		000000	00
4-XOR example	9		

- Time $2^{n/4}$ for the **search**
- Time 2^{n/4} for the **intermediate lists**

 \implies Similar results follow for all k

Naya-Plasencia, S., "Optimal Merging in Quantum k-XOR and k-SUM Algorithms", EUROCRYPT 2020

The k-XOR Problem	Quantum Security of AES	000000	00	
Single-solution k-XOR				

k-XOR

Let $H : \{0,1\}^{n/k} \to \{0,1\}^n$ be a random function, find x_1, \ldots, x_k such that $H(x_1) \oplus \ldots \oplus H(x_k) = 0$.

Classical:

- Time $2^{n/2}$ for a generic k (like a collision search)
- Advanced algorithms can reduce the memory using merging trees

Quantum:

- Time decreases with k, down to $2^{2n/7}$ (not like a collision search)
- Merging trees reduce the memory **and the time** complexity

The k-XOR Problem	Quantum Security of AES	Saturnin	Conclusion
0000000	●000	000000	00

Case Study: Quantum Security of AES

Saturnin 000000 Conclusion

Key-recovery attacks on AES

- A 128-bit block cipher based on an SPN structure
- 20 years of cryptanalysis

Classical (key-recovery) attacks:

time $< 2^{|k|}$

- AES-128: **7/10-round** Impossible Differential
- AES-256: 9/14-round
 Demirci-Selçuk-MITM

Quantum (key-recovery) attacks: time $< 2^{|k|/2}$

- AES-128: 6/10-round quantum Square
- AES-256: **8/14-round** quantum DS-MITM

Bonnetain, Naya-Plasencia, S., "Quantum Security Analysis of AES", ToSC 2019

The k-XOR Problem

Quantum Security of AES

Saturnin 000000 Conclusion

Key-recovery attacks (ctd.)

So far all attacks on AES follow a "quantization" strategy:

- start from a classical attack
- ② use Grover search to accelerate the parts that we can
- A classical attack cannot be always "quantized".
- The 7-round DS-MITM attack from [DFJ13] on AES-128 uses a table of size 2⁸⁰. Creating this table exceeds the 2⁶⁴ quantum time limit.

Derbez, Fouque, Jean, "Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key Setting", EUROCRYPT 2013

The k-XOR Problem	Quantum Security of AES ○○○●	Saturnin 000000	Conclusion
Security of AES	5		

So far AES-256 remains a good cipher for post-quantum applications.

- With some limitations, e.g., (quantum) birthday bound security levels for a 128-bit state size.
- A bigger block size would be helpful...can it also be a lightweight cipher?

The k-XOR Problem	Quantum Security of AES	Saturnin	Conclusion
0000000	0000	00000	00

Saturnin

The k-XOR Problem	Quantum Security of AES	Saturnin ○●○○○○	Conclusion
Context			

Saturnin:

- (was) one of the second-round candidates in the current NIST "lightweight crypto standardization process"
- the only one with a 256-bit block cipher and (superposition) quantum security claims

5	4	3	1	2

Saturnin:	a suite of	lightweight	symmetric algorithms for	post-quantum security
-----------	------------	-------------	--------------------------	-----------------------

- 1. we wanted to build a block cipher
- 2. ... post-quantum: 256-bit keys and blocks, quantum security claims
- **3. ... lightweight:** performs well on all platforms
- 4. with quantum-secure modes of operation for AEAD / Hashing

5. and a good name

Canteaut, Duval, Leurent, Naya-Plasencia, Perrin, Pornin, S., "Saturnin: a suite of lightweight symmetric algorithms for post-quantum security", ToSC S1, 2020

The k-XOR Problem	Quantum Security of AES	Saturnin	Conclusion
0000000	0000	00000	00

The state

 $4\times4\times4$ cube of 4-bit nibbles

16 registers of 16 bits

16 values of 16 bits (the columns)

Operations are easier to describe

Good for implementations

Looks like a scaled-up version of AES Quantum Security of AES

Saturnin 000●00 Conclusion

The round function

One round of Saturnin

- S-Box layer
- Nibble permutation SR and its inverse
- Linear MixColumns
- Every two rounds: Sub-key addition (and round constants)

Two rounds of Saturnin

Similar to a single round of AES in the AES-like representation.

- AES-128 has **10 rounds**: Saturnin has **20 rounds**.
- AES has very simple security arguments: Saturnin also.
- AES has 20 years of cryptanalysis: Saturnin benefits from it.

The	k-XOR	Problem
000	00000	C

Quantum Security of AES

Saturnin 0000●0 Conclusion

Modes

Saturnin-Short: AE for small messages

Single 256-bit encryption of message and nonce

Saturnin-CTR-Cascade: all-purpose AEAD

• Encrypt-then-MAC using CTR for encryption and a Cascade MAC

Saturnin-Hash: hashing

 Merkle-Damgård with the MMO mode, using a 16 Super-round version (a.k.a. Faturnin)

The k-XOR Problem	Quantum Security of AES	Saturnin ○○○○○●	Conclusion
Modes (ctd.)			

- Saturnin-CTR-Cascade is a rate-2 AEAD (2 encryptions per block)
- (Fully) quantum-secure rate-1 AEAD from a block cipher, in the standard model, is an open question
- With the QCB mode, we can achieve rate-1 AEAD with a **related-key** quantum-secure block cipher (e.g. Faturnin)
- With a standard-secure block cipher, this is still an open question.

Bhaumik, Bonnetain, Chailloux, Leurent, Naya-Plasencia, S., Seurin, "QCB: Efficient Quantum-Secure Authenticated Encryption", ASIACRYPT 2021

The k-XOR Problem	Quantum Security of AES	Saturnin	Conclusion
0000000	0000	000000	O

Conclusion

The k-XOR Problem	Quantum Security of AES	Saturnin 000000	Conclusion ○●
Conclusion			

A quantum adversary can:

- Use new generic algorithms
- Leverage existing classical attacks to reduce the actual bit-security (not only the generic level)
- (Sometimes) use new quantum attacks
- Symmetric cryptography holds well against quantum adversaries.
- However, the post-quantum security of our primitives / constructions should not be taken for granted, but clearly analyzed.
- Fortunately, quantum security does not come at the expense of lightness.

Thank you!