Quantum Algorithms for Cryptanalysis and Post-Quantum Symmetric Cryptography

André Schrottenloher

June 23rd, 2022

Cryptography

Enable secure communications over insecure channels, at the lowest possible cost.

Asymmetric

- No shared secret
- Public-key schemes (RSA...), key-exchange protocols, signatures...

Symmetric

- Shared secret
- Block ciphers (AES...), stream ciphers, hash functions (SHA-3...)...

Symmetric cryptography

Example:

- After having shared a secret key k, Alice and Bob communicate using an encryption scheme
- The algorithm is based on a block cipher $E_{\mathrm{k}}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ (the primitive)
- They agree on the standard AES-128: $|k|=128, \mathrm{n}=128$

Security of primitives

The security of an ideal primitive is defined by generic attacks.

Generic key-recovery: "try all the keys"

- Given a few plaintext-ciphertext pairs, try all keys k and find the matching one. Costs $2^{|k|}$ encryptions.
- If $|k|=128: 2^{128}=$ approx. 10^{22} core-years
- "128 bits of security"

- But AES is not ideal and its security can only be conjectured
- Cryptanalysis is our empirical measure of security
- If we find a better attack than generic, the cipher is broken (the conjecture is false)

The adversary becomes quantum

- For long-term security, we need to take into account a quantum adversary
- By changing the notion of "computation", the status of our computational conjectures will change

The post-quantum world

What can this adversary do?

Asymmetric crypto

- Shor's algorithm breaks factorization and DL-based systems

Symmetric crypto

- Grover's algorithm accelerates exhaustive key-recovery to $\sqrt{2^{|k|}}=2^{|k| / 2}$
- So ideally, we should increase (double) the key sizes
- What else?

Shor, "Algorithms for Quantum Computation: Discrete Logarithms and Factoring", FOCS 1994
X a search space of size $2^{|k|}, f: X \rightarrow\{0,1\}$, find the single $x_{0} \in X$ such that $f(x)=1$.

Classical (exhaustive) search

$$
\text { Repeat } 2^{|k|} \text { times }\left\{\begin{array}{l}
\text { Sample } x \in X \\
\text { Test if } f(x)=1
\end{array}\right.
$$

Quantum search (Grover's algorithm)

$$
\text { Repeat } \mathcal{O}\left(\sqrt{2^{|\mathrm{k}|}}\right) \text { times }\left\{\begin{array}{l}
\text { Sample } x \in X \rightarrow \text { quantumly } \\
\text { Test if } f(x)=1 \rightarrow \text { quantumly }
\end{array}\right.
$$

\Longrightarrow we will treat it as a black box.

Grover, "A fast quantum mechanical algorithm for database search", STOC 96

Contributions

1. New algorithms for generic problems in cryptography

- Collisions and generalized collisions ($k-X O R, k-S U M)$

2. Quantum cryptanalysis of structured constructions

- New algorithmic tool: offline-Simon

3. Dedicated cryptanalysis

- Gimli, Spook (recent lightweight ciphers)
- Quantum security analysis of AES (spoiler: seems safe so far)

4. Design

- The Saturnin block cipher and algorithms (maximal security at a minimal cost)

Outline

(1) Quantum Algorithms for the k-XOR Problem
(2) Quantum Security of AES
(3) Saturnin
(4) Conclusion

Quantum Algorithms for the $k-X O R$ Problem

k-XOR problem (with many solutions)

k-XOR

Let $H:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a random function, find x_{1}, \ldots, x_{k} such that $H\left(x_{1}\right) \oplus \ldots \oplus H\left(x_{\mathrm{k}}\right)=0$.

- Usually H is a known, keyless function (a hash function, a list of data)
- We have a quantum algorithm for H (quantum oracle access)

The query complexity

Classical: $2^{n / k}$ (trivial)
Quantum: $2^{n /(k+1)}$ (not trivial)
[Belovs \& Spalek]

We will be interested in the time complexity, which is usually much higher.

- We focus on the exponent: α_{k} in $\widetilde{\mathcal{O}}\left(2^{\alpha_{k} \mathrm{n}}\right)$
- All the results apply with + instead of $\oplus(k-S U M)$

Potential applications

Subset-sum: given n integers $\bar{a}=a_{0}, \ldots a_{n-1}$ on poly (n) bits, find a binary \bar{e} such that $\bar{a} \cdot \bar{e}=0 \Longrightarrow$ reduces to k-SUM
Parity check problem: find a low-weight multiple of a polynomial \Longrightarrow reduces to k-SUM
LPN: given samples $a, a \cdot s \oplus e$ with n-bit uniform random a and Bernoulli noise e, find $s \Longrightarrow$ reduces to k-SUM
Multiple-encryption: given a few plaintext-ciphertext pairs $\left(x, E_{k_{1}} \circ \ldots \circ E_{k_{r}}(x)\right)$, find the independent keys $k_{1}, \ldots k_{r}$ \Longrightarrow similar algorithms applicable
The merging algorithms used for k-SUM also appear in generic information set decoding, lattice sieving or subset-sum algorithms.

2-XOR: collision search

Classical setting (naive)

(1) Store $2^{\mathrm{n} / 2}$ queries $(x, H(x))$ in a list \mathcal{L}_{2}
(2) Enumerate a list \mathcal{L}_{1}, looking for a collision with \mathcal{L}_{2}

Brassard, Høyer and Tapp, "Quantum Cryptanalysis of Hash and Claw-Free Functions", LATIN 98

2-XOR: collision search

Classical setting (naive)

(1) Store $2^{\mathrm{n} / 2}$ queries $(x, H(x))$ in a list \mathcal{L}_{2}
(2) Enumerate a list \mathcal{L}_{1}, looking for a collision with \mathcal{L}_{2}

Quantum setting (BHT)

(1) Store $2^{\mathrm{n} / 3}$ queries $(x, H(x))$ in a list \mathcal{L}_{2}
(2) (Quantum) search in \mathcal{L}_{1} for a collision with \mathcal{L}_{2}

Brassard, Høyer and Tapp, "Quantum Cryptanalysis of Hash and Claw-Free Functions", LATIN 98

Merging with $k=4$

(1) Make 4 lists of $2^{n / 3}$ queries $(x, H(x))$

围 Wagner, "A Generalized Birthday Problem", CRYPTO 2002

Merging with $k=4$

(1) Make 4 lists of $2^{n / 3}$ queries $(x, H(x))$
(2) Merge into 2 lists of pairs (x, y) with $\mathrm{n} / 3$ zeroes in the sum $H(x) \oplus H(y)$

围 Wagner, "A Generalized Birthday Problem", CRYPTO 2002

Merging with $k=4$

(1) Make 4 lists of $2^{n / 3}$ queries $(x, H(x))$
(2. Merge into 2 lists of pairs with $n / 3$ zeroes in the sum
(3. Merge into 1 list of 4-tuples with $n / 3+2 n / 3=n$ zeroes (4-XOR to zero)

Wagner, "A Generalized Birthday Problem", CRYPTO 2002

Depth-first traversal of Wagner's tree

We search an element of \mathcal{L}_{0}

Depth-first traversal of Wagner's tree

We search an element of \mathcal{L}_{0}
\Longrightarrow We search an element of $\mathcal{L}_{1} \bowtie \mathcal{L}_{2}$ that collides with $\mathcal{L}_{3} \bowtie \mathcal{L}_{4}$

Depth-first traversal of Wagner's tree

Search an element of \mathcal{L}_{0}
\Longrightarrow Search an element of $\mathcal{L}_{1} \bowtie \mathcal{L}_{2}$ that collides with $\mathcal{L}_{3} \bowtie \mathcal{L}_{4}$
\Longrightarrow Search an element of \mathcal{L}_{1} that yields an element of $\mathcal{L}_{1} \bowtie \mathcal{L}_{2}$ that collides with $\mathcal{L}_{3} \bowtie \mathcal{L}_{4}$

4-XOR example

- Time $2^{n / 6}$ for the search
- Time $2^{n / 3}$ for the intermediate lists

Naya-Plasencia, S., "Optimal Merging in Quantum k-XOR and k-SUM Algorithms", EUROCRYPT 2020

4-XOR example

- Time $2^{n / 4}$ for the search
- Time $2^{n / 4}$ for the intermediate lists

\Longrightarrow Similar results follow for all k

Naya-Plasencia, S., "Optimal Merging in Quantum k-XOR and k-SUM Algorithms", EUROCRYPT 2020

Single-solution k-XOR

k-XOR

Let $H:\{0,1\}^{n / k} \rightarrow\{0,1\}^{n}$ be a random function, find x_{1}, \ldots, x_{k} such that $H\left(x_{1}\right) \oplus \ldots \oplus H\left(x_{k}\right)=0$.

Classical:

- Time $2^{n / 2}$ for a generic k (like a collision search)
- Advanced algorithms can reduce the memory using merging trees

Quantum:

- Time decreases with k, down to $2^{2 n / 7}$ (not like a collision search)
- Merging trees reduce the memory and the time complexity

Case Study: Quantum Security of AES

Key-recovery attacks on AES

- A 128-bit block cipher based on an SPN structure
- 20 years of cryptanalysis

Classical (key-recovery) attacks:

$$
\text { time }<2^{|k|}
$$

- AES-128: 7/10-round Impossible Differential
- AES-256: 9/14-round

Demirci-Selçuk-MITM

Quantum (key-recovery) attacks:

$$
\text { time }<2^{|\mathrm{k}| / 2}
$$

- AES-128: 6/10-round quantum Square
- AES-256: 8/14-round quantum DS-MITM

Key-recovery attacks (ctd.)

So far all attacks on AES follow a "quantization" strategy:
(1) start from a classical attack
(2) use Grover search to accelerate the parts that we can

- A classical attack cannot be always "quantized".
- The 7-round DS-MITM attack from [DFJ13] on AES-128 uses a table of size 2^{80}. Creating this table exceeds the 2^{64} quantum time limit.

Derbez, Fouque, Jean, "Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key Setting', EUROCRYPT 2013

Security of AES

So far AES-256 remains a good cipher for post-quantum applications.

- With some limitations, e.g., (quantum) birthday bound security levels for a 128-bit state size.
- A bigger block size would be helpful. . . can it also be a lightweight cipher?

Saturnin

Context

Saturnin:

- (was) one of the second-round candidates in the current NIST "lightweight crypto standardization process"
- the only one with a 256 -bit block cipher and (superposition) quantum security claims

1. we wanted to build a block cipher
2. ... post-quantum: 256-bit keys and blocks, quantum security claims
3.lightweight: performs well on all platforms
4. with quantum-secure modes of operation for AEAD / Hashing
5. and a good name

Canteaut, Duval, Leurent, Naya-Plasencia, Perrin, Pornin, S., "Saturnin: a suite of lightweight symmetric algorithms for post-quantum security", ToSC S1, 2020

The state

$4 \times 4 \times 4$ cube of 4 -bit nibbles

Operations are easier to describe

16 registers of 16 bits

Good for implementations

16 values of 16 bits (the columns)

Looks like a scaled-up version of AES

The round function

One round of Saturnin

- S-Box layer
- Nibble permutation SR and its inverse
- Linear MixColumns

Two rounds of Saturnin

Similar to a single round of AES in the AES-like representation.

- Every two rounds: Sub-key addition (and round constants)
- AES-128 has $\mathbf{1 0}$ rounds: Saturnin has $\mathbf{2 0}$ rounds.
- AES has very simple security arguments: Saturnin also.
- AES has 20 years of cryptanalysis: Saturnin benefits from it.

Modes

Saturnin-Short: AE for small messages

- Single 256 -bit encryption of message and nonce

Saturnin-CTR-Cascade: all-purpose AEAD

- Encrypt-then-MAC using CTR for encryption and a Cascade MAC

Saturnin-Hash: hashing

- Merkle-Damgård with the MMO mode, using a 16 Super-round version (a.k.a. Faturnin)

Modes (ctd.)

- Saturnin-CTR-Cascade is a rate-2 AEAD (2 encryptions per block)
- (Fully) quantum-secure rate-1 AEAD from a block cipher, in the standard model, is an open question
- With the QCB mode, we can achieve rate-1 AEAD with a related-key quantum-secure block cipher (e.g. Faturnin)
- With a standard-secure block cipher, this is still an open question.

Bhaumik, Bonnetain, Chailloux, Leurent, Naya-Plasencia, S., Seurin, "QCB: Efficient Quantum-Secure Authenticated Encryption", ASIACRYPT 2021

Conclusion

Conclusion

A quantum adversary can:

- Use new generic algorithms
- Leverage existing classical attacks to reduce the actual bit-security (not only the generic level)
- (Sometimes) use new quantum attacks
- Symmetric cryptography holds well against quantum adversaries.
- However, the post-quantum security of our primitives / constructions should not be taken for granted, but clearly analyzed.
- Fortunately, quantum security does not come at the expense of lightness.

Thank you!

