Increasing the Integrity of
the Open Source Software
Supply Chain with
Reproducible Builds

Journées Nationales GDR Sécurité Informatique
2022-06-22

Stefano Zacchiroli — Télécom Paris, Institut Polytechnique de Paris
stefano.zacchiroli@telecom-paris.fr
https://upsilon.cc/zack
@zacchiro | mastodon.xyz/@zacchiro

mailto:stefano.zacchiroli@telecom-paris.fr
https://upsilon.cc/zack
https://twitter.com/zacchiro
https://mastodon.xyz/@zacchiro

Open Souce Software Supply
Chain Attacks

o [Ohm20]: Marc Ohm, Henrik Plate, Arnold Sykosch, Michael Meier.
Backstabber's Knife Collection: A Review of Open Source Software

Supply Chain Attacks. DIMVA 2020: 23-43.
o [Ladisa22]: Piergiorgio Ladisa, Henrik Plate, Matias Martinez,
Olivier Barais: Taxonomy of Attacks on Open-Source Software

Supply Chains. (Preprint, to appear.)

The software supply chain

Supply chain attacks

A software supply chain attack is a particular kind of cyber-attack that
aims at injecting malicious code into an otherwise legitimate software
product.

Notable examples

e NotPetya (2017): ransomware concelaed in an update of a popular
accounting software, hitting Ukranian banks and major corps (BS)

e CCleaner (2017): malicious version of a popular MS Windows
maintenance tool, distributed via the vendor website

e SolarWinds (2020): malicious update of the SolarWinds Orion
monitoring software, shipping a delayed-activation trojan.
Breached into several US Gov. branches as well as Microsoft

Open source supply chain attacks

e Is this specific to Free/Open Source Software (FOSS)? No.
e But modern FOSS package ecosystems are heavily intertwined.

= Examples: NPM (JavaScript), PyPI (Python), Crates (Rust),
Gems (Ruby), etc.

= 100/10k/1M packages, depending on each other due to
code reuse opportunities.

= Reverse transitive dependencies grow fast. A single
package could be required by thousands of others.

left-pad (2016)

function leftpad (str, len,
str = String(str);
var i = -1;
if (!ch && ch !== 0) ch
len = len - str.length;
while (++i < len) { str
return str,;

1
2
3
4
5
6
4
8

-

e Maintainer: “I think | have the right of deleting all my stuff”.
“Unpublish” package.

e Impact: “many thousands of projects”—including major ones like
babel and atom—no longer installable.

e NPM operators forcibly “un-unpublish” package.

Open source supply chain attacks (cont.)

e For an attacker, code injection into (transitively) popular leaf
packages has a low opportunity cost.

e Also, entirely open FOSS package ecosystems (# Linux distros)
can be easy to infiltrate.

(An) open source development workflow

Commit
and —_— .
—— Create = Configure ~

Pull Request
Contributor Mamtamer
Create
Pull Request Configure and Trigger
\ A 4 v v

Distribution Platform

Ny RNV INY

Version Control System Build System

[Build Process

= =Publish

-_
[Codebase

=Pull ==

(image from [Ohm20])

Attack tree — Injection

Injection of Malicious Code
(into dependency tree)

/ \ —

Create
New Package Existing Package
1 3 / 1 \
Trojan Horse Typosquatting Use After Free| |Inject into Inject during Inject into
[12] (4,35,3,36,14,15] (10] Source the Build Repository System
Pull Request \. . J. . Weak/ Com.promlsed Exploit Deploy in
. Commit Compromise Credentials or s Alternative
(as contributor) L . Vulnerabilities . .
[19] (as maintainer) Build System API Tokens [1,24,25] Reposmo[rT /Mirror
/ / [7,39,16,9,11] — 6
X Social - \
Wezék/ dCorrth iomlsed Engineering hr{;;l;izlite Run Malicious Build
X;Ier'}li S or to become Downl(;ora q (on shared systems)
oens Maintainer [20]
[26,21] 22] [1,38]

(image from [Ohm20])

Attacker’s goal: package P containing malicious code is available from
download from a distribution platform and P is a reverse transitive
dependency of a legitimate package.

Attack vector — Typosquatting

Injection —» Create New Package — Typosquatting

1. Create a new package with a name similar (e.g., Levenshtein
distance <= 2) to an existing popular package, including malicious
code. Examples:

e squat on PyPI the Debian package name (“python-sqlite” v.
“sqlite”)

e English variants (“color” v. “colour”)

e Unicode tricks

2. Upload it to a distribution platform (e.g., PyPI)
3. Wait for users to mistype (e.g.,, pip install python-sqglite)

Related attack vector: Use After Free

Attack vector — Become maintainer

Injection — Infect Existing Package - Inject into Source -~ Commit (as maintainer) — Social Engineering to become Maintainer

1. Package maintainer: “I no longer have time for this project, who
wants to take over its maintenance?”

2. Attacker: raises hand
3. Attacker: releases new version including malicious code

Might require early investment by the attacker to accrue enough “street
credibility” to win over maintenance at the right moment. For popular
packages with low bus factor it could be worth it.

Attack vector — Compromise build system

Injection of Malicious Code - Infect Existing Package - Inject during the Build -~ Compromise Build System

o Often, code run by users is written but not built by maintainers

e Rather, it is built by 3rd-party vendors

)

= e.g.,, GNU/Linux distros, app store operators, arch “porters’

e |t hence becomes attractive to break into vendor build systems,
compromising binaries “downstream”, without anybody auditing
source code noticing

Related attack vectors: Inject into [Package] Repository System (=
VCS)

Reproducible Builds

https://reproducible-builds.org/

[Lamb22]: Chris Lamb, Stefano Zacchiroli. Reproducible Builds:
Increasing the Integrity of Software Supply Chains. IEEE Softw. 39(2): 62-
70 (2022).

https://reproducible-builds.org/

On untrusted code

“You can't trust code that you did not totally create
yourself. [...] No amount of source-level verification
or scrutiny will protect you from using untrusted
code.”

— Ken Thompson, Reflections on Trusting Trust,
Turing Lecture 1984

e 40 years later nobody “totally creates” code they run
e Reuse of open source software (FOSS) is everywhere in IT

= “09% of audited code bases contain FOSS components”
(Synopsis, 2020)

e Also, the FOSS we run is often not built by its developers

Problem statement

How can we increase users' trust when running (trusted)
FOSS code built by (untrusted) 3rd-party vendors?

Problem statement

How can we increase users' trust when running (trusted)
FOSS code built by (untrusted) 3rd-party vendors?

Injection of Malicious Code
(into dependency tree)
Create / \ Infect
New Package Existing Package
\L Y / L \
Trojan Horse [| Typosquatting | | Use After Free| |Inject into Inject during Inject into
[12] (4,35,3,36,14,15] (10] Source the Build Repository System
'/ \ J' Weak /Compromised J’ - Deploy in
Pull Request . ; . Exploit .
(as contributor) Commit Compromise Credentials or Vulnerabilities Alternative
as maintainer Build System API Tokens Repository /Mirror
[19] U [1,24,25]
/ / [7,39,16,9,11] i [6]
3 Social - \
Weaék/ Sorrth T?mlbal Engineering M;;;i:lite Run Malicious Build Kk fp
geplel,};iebn:r to become Downl(;ga q (on shared systems) Attack subtree mltlgated
26,21] Maintainer [1,38] [20] by reproducible builds
! (22] !

A reproducible build (r-b) process

Precondition/hypothesis: we can “reproducibly build” all relevant (FOSS)
products, i.e.:

The build process of a software product is
reproducible if, after designating a specific version
of its source code and all of its build
dependencies, every build produces bit-for-bit
identical artifacts, no matter the environment in
which the build is performed. — [Lamb22]

(we'll verify later how realistic this is)

R-B approach

source
code

Upstream software
developers
eg. on GitHub

~

build

checksum
OXxBAAD

binary

source 5 process > build
code build build artifacts
inputs outputs
Software vendor
/ build / build e.g. Linux distribution, app store
k dependencies toolchain (untrusted process)

)

source
code

build build
=\ =/

Independent build

0x1337

Independent build

)

Independent build

distribution
(untrusted)

compa re

checksum
OxBAAD

E nd-user system
0x1337

0x1337

Making Debian reproducible

e Let's try a large-scale experiment: making all Debian packages build
reproducibly from source

= Debian: one of the largest and most popular GNU/Linux
distro, esp. in the server/cloud market

= 30000+ (source) packages, 1+B lines of code

= |nitial goal of the reproducible-builds.org initiative, est. 2014

e Goals:

1. Empirical experiment to identify common causes of non-
reproducibility

2. Real impact (if successful) due to Debian popularity in the
market

http://reproducible-builds.org/

Build reproducibility in the small

How hard could it be to ensure build reproducibility?

Build reproducibility in the small

How hard could it be to ensure build reproducibility?
After controlling for source code, build deps., and toolchain, two main
classes of issues arise in practice:

1. Uncontrolled build inputs: when toolchains allow the build

process to be affected by the surrounding environment.

e Intuition: this is the build engineering equivalent of breaking
encapsulation in programming

2. Build non-determinism that gets encoded in final built artifacts.

Build reproducibility in the small

How hard could it be to ensure build reproducibility?
After controlling for source code, build deps., and toolchain, two main
classes of issues arise in practice:

1. Uncontrolled build inputs: when toolchains allow the build

process to be affected by the surrounding environment.

e Intuition: this is the build engineering equivalent of breaking
encapsulation in programming

2. Build non-determinism that gets encoded in final built artifacts.

Let’s see a bestiary of real-world examples...

Build timestamps

1] void usage() {

2 fprintf(stderr,

3 "foo-utils version 3.141 (built %s)\n",
4

5

__DATE__);

3

e The __ DATE___ C preprocessor macro “expands to a string

constant that describes the date on which the preprocessor is
being run.”

e Fix: SOURCE_DATE_EPOCH environment variable (standardized by
r-b) to enable controlling for this

Build paths

fprintf (stderr,
"DEBUG: boop (%s:%s\n",

__FILE__, _ LINE_);

e The __FILE__ C preprocessor macro “expands to the name of the
current input file”. This results in non reproducibility when the
program is built from different directories, e.g.,
/home/lamby/tmp vs. /home/zack/tmp.

e Fix: introducted gcc -ffile-prefix-map option (and related -
fdebug-prefix-map) to support embedding relative (rather than
absolute) paths

Filesystem ordering

NAME
readdir - read a directory

SYNOPSIS
#include <dirent.h>
struct dirent *readdir(DIR *dirp);

[..] The order in which filenames are read by successive calls to
readdir () depends on the filesystem implementation; it is unlikely
that the names will be sorted in any fashion. [..]

1
2
&
4
5
6
7
8
9
0

[

e Fix: impose a deterministic order in build systems/recipes, e.g., via
an explicit sort ()

Archive metadata

e Archive formats like .zip and . tar embed various kinds of
metadata by default

= User/group ownership (e.g., zack v. lamby)

= File modes (umask)
= Timestamps

e Fix: control for this, e.g.:

= tar --owner=0 --clamp-mtime=T
» touch --date=$SOURCE_DATE_EPOCH

Randomness

Even when the entire environment inputs are controlled for, many builds
remain non-deterministic. For instance due to randomness in
unexpected places.

my h = ((a =>1, b => 2, ¢ => 3);
foreach my $k (keys %h) {

print "$k\n";
}

e Perl’s hash type does not specify an ordering for key traversal, so a
call to sort should be inserted before keys %h to make it
deterministic.

Uninitialized memory

e Many data structures contain undefined areas that do not affect
their operation, but could end up being serialized into build
artifacts.

e Padding for natural memory alignment can also be filled with
arbitrary content.

e Fix: explicitly zero-out memory.

void initializeDirentry(
direntry_t *entry, Stream_t *Dir) {

1
2
3
4
5
6
4
8
9

entry->entry = -1,
entry->Dir = Dir;

e A patch for GNU mtools to ensure a direntry_t struct does not
contain uninitialized memory.

https://www.gnu.org/software/mtools/

Build reproducibility in the large

e Let's now assume we know how to fix all micro-issues that affact
build reproducibility.

« How do we go about making large FOSS software collections
reproducible?

s Use case: Debian

e Approach: establish a corresponding Quality Assurance process
and soft-enforce it using Continuous Integration (Cl).

Adversarial rebuilding

How do you find build reproducibility issues, at scale?

e Mass-rebuild all packages...
e ..building each of them twice...

e ..in two build environments configured to differ as much as
possible:

= Clock set 18 months in the future in 2nd build
» Changing: hostname, locales, kernel

= Reverse filesystem ordering using disorderfs
= 30+ variations in total

https://salsa.debian.org/reproducible-builds/disorderfs

Recording build information

o According to our definition of a reproducible build, legitimate build

inputs should be controlled for and replicated identical in the 2nd
build:

= Source version of product under build
= Ditto for all transitive build dependencies
= Toolchain version

e To that end, the .buildinfo file format has been designed to
capture these information

.buildinfo — Example

Source: black

Version: 20.8b1-1

Checksums-Sha1l:
9915459ae7ala5c3efbh984d7e5472f7976e996b1 2584 black_20.8bl-1.dsc
14bfd3011b795f85edbc8cc4dc034a91cfaad9bcd 111096 black_20.8bl-1_all.deb
69c3d4ae7115c51e7b00befe8b4afd5963601d66 285684 python-black-doc_20.8b1-1_all.d

Checksums-Sha256: [...]

Build-Architecture: amd64

Installed-Build-Depends: autoconf (= 2.69-11.1), automake (= 1:1.16.2-4), [..], 9C

1
2
3
4
5
6
7
8
9

e An example .buildinfo file, recording both the environment and
results of building Debian’s black package. (See full version.)

https://buildinfo.debian.net/sources/black/20.8b1-1

Build attestations

e .buildinfo files also contain the cryptographic checksums of
final build artifacts, making them fill the role of build attestations:

I, Alice, given source X, build dependencies
Y_1,..,Y_n and toolchain Z, have conducted a build
run obtaining a set of artifacts with checksums
K_1,...K_m.

e Anyone (for QA or independent verification purposes) can rerun
the build and publish their own build attestations

.buildinfo — Usage

SSSSS

uuuuuuuu

0x1337

ystem
0x1337
0x1337 ‘

5>\ build s i buld /
\'\L/ bt
Idped lent build

C

e Before installation, users verify package checksums against
published build attestations

e Published by either vendors they trust; or relying on some
consensus within a network of independent rebuilders

e Debian publishes 27+M build attestations at
https://buildinfo.debian.net

https://buildinfo.debian.net/

Reproducible Debian — Evolution over time

Reproducibility status for packages in 'unstable’ for 'amd64'

Amount (total)
15000 20000 25000 30000
1 1 I)

10000
1

5000
1

2014-10-01 2015-02-18 2015-07-08 2015-11-25 2016-04-13 2016-08-31 2017-01-18 2017-06-07 2017-10-25 2018-03-14 2018-08-02 2018-12-20 2019-05-09 2019-09-26 2020-02-15 2020-07-04 2020-11-21 2021-04-10 2021-08-28 2022-01-15

Quality assurance synergies

o Systematic R-B testing = systematic build testing, catching any

e Some software will only FTBFS in the extreme R-B build
environment; fixing it will make the software more robust in
general

= E.g., expired SSL certificates at +18 months, or unusual
timezone offsets

e R-B testing can detect user-level breakages by serendipity

= E.g., HTML documentation pointing to
/tmp/build/foo/usage.html instead of
/usr/share/doc/foo/usage.html

Quality assurance synergies — security

e Security issues can also be spotted during R-B testing by
serendipity

~

'cgibin' => '/usr/lib/cgi-bin/gbrowse’,
'conf' => '/etc/gbrowse',

'databases' => '/var/lib/gbrowse/databases’,
"htdocs' => '/usr/share/gbrowse/htdocs',
'OpenIDConsumerSecret' => '639098210478536"',
"tmp' => '/var/cache/gbrowse'

1
2
3
4
5
6
7
8

o
~

e« An example ConfigData.pm. As it was created at build time, all
users shared the same OpenIDConsumerSecret. (See: Debian
bug #833885.)

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=833885

The Reproducible Builds ecosystem

e B
https://reproducible-builds.org/

2014: project started by Debian developers for Bebianneeds fun
Joined since: Arch Linux, coreboot, F-Droid, Fedora, FreeBSD, Guix,
NixOS, openSUSE, Qubes, Tails, ...

2017 milestone: Tails (live distro used by Snowden to exfiltrate
NSA documents) publishes a fully reproducible ISO to improve
end-user verifiability

R-B is an independent project hosted by Software Freedom
Conservancy and supported by 3rd-party sponsors (e.g., Google,
The Linux Foundation, Ford Foundation, Siemens)

https://reproducible-builds.org/
https://sfconservancy.org/

Challenges

Debian reached 95% reproducible packages, can we go all the way?

= Yes, it's just busy/constant maintenance work.
= Working with upstream and spreading r-b culture helps a lot.

How to make signed buld artifacts reproducible (without distributing
signing keys)?

» Detached signatures. (Painful for distribution channels.)
How do end-user verify build artifacts before installation?

= Particularly challenging on locked-down mobile
environments/stores.

How little trusted code is acceptable?

» Bootstrappable Builds managed to bootstrap from a 6 KiB trusted
ELF binary to GCC via TCC.

https://bootstrappable.org/
https://bellard.org/tcc/

Takeaways

e Open source software supply chain attacks are both a big issue
and a hot topic in cybersecurity right now.

e Reproducible Builds help countering build/distribution injection
attacks, by enabling (distributed) anti-tampering detection at the
executable/package level.

Learn more

e Chris Lamb, Stefano Zacchiroli. Reproducible Builds: Increasing the
Integrity of Software Supply Chains. IEEE Softw. 39(2): 62-70
(2022).

Advertisement
Télécom Paris is hiring a tenured associate professor on this topic!

(and software engineering for cybersecurity more generally). Check my
home page (https://upsilon.cc) or ask me for details.

https://institutminestelecom.recruitee.com/o/associate-professor-of-software-engineering-for-safe-and-secure-systems-at-telecom-paris-cdi
https://upsilon.cc/

Appendix

Root cause analysis — Diffoscope

dolfinx-doc_2019.2.0~git20200128.797071f-3_all.deb 1.16 KB

file list 367 B

Qo chRlesies R Beceenne I 42020-02-03-15:41:41.600000- , -rW-r--r---- 9 oo T Brovvcnne 4.2020-82-03-15:41:41.000008 -
debian-binary debian-binary

P T R RS [[TR 1664-2020-62-03-15:41:41.000000 , -rW-r--r---- 0o ;TR B----- 1664 - 2020-02-63-15:41:41. 000000 -
control.tar.xz control.tar.xz

3 oMW-r--r----o@--oo-o-@-------0---190104-2020-02-03-15:41:41.000000- , -rW-r--r-----@.-------@--------0---199108-2020-02-03-15:41:41.000000-
data.tar.xz data.tar.xz

data.tar.xz 625 B

#-Get -DOLFINX: configuration data- (DOLFINXConfig.cmake -must be in
DOLFINX_CMAKE CONFIG_PATH)

if- (NOT- TARGET -doLlfinx)

--find package (DOLFINX REQUIRED)

endif()

#-Executable
add_executable(${PROJECT NAME} hyperelasticity.c main.cpp)

#-Set - C++17-standard
target compile features(${PROJECT NAME} PRIVATE-cxx std 17)

#:-Target - libraries
target link libraries(${PROJECT MAME} -dolfinx)

#-Get -DOLFINX-configuration-data- (DOLFINXConfig.cmake -must be in
DOLFINX_CMAKE CONFIG_PATH)

if: (NOT TARGET -dolfinx)

--find_package (DOLFINX-REQUIRED)

endif()

#-Executable
add_executable(${PROJECT NAME}-main.cpp hyperelasticity.c)

#-Set - C++17-standard
target compile features(${PROJECT NAME} PRIVATE-cxx std 17)

-Target-libraries
target link libraries(${PROJECT NAME} -dolfinx)

https://diffoscope.org/

