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Hard problems for Cryptography

Use (hopefully) intractable problems to construct 
cryptographic primitives.

Start from…

• factorisation 

• discrete logarithm 

• lattice problems 

• isogeny problems 

• …

… to obtain:

• encryption schemes 

• signature schemes 

• hash functions 

• …
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What is a discrete logarithm?

Definition: Given a finite cyclic group  of order , a generator  and some 
element , the discrete logarithm of  in base  is the element  
such that 

G n g ∈ G
h ∈ G h g x ∈ [0,n)
gx = h .
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Example: , G = ℤ×

7 g = 3,

h = 6 ∈ ℤ×
7 ,

g1 ≡ 3 (mod 7)

g2 = 9 ≡ 2 (mod 7)

g3 = 27 ≡ 6 (mod 7)

The discrete logarithm of  in base  is h g 3.
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The discrete logarithm problem (DLP)

Definition: Given a finite cyclic group  of order , a generator  and 
some element , find the element  such that 

G n g ∈ G
h ∈ G x ∈ [0,n) gx = h .

Computing the inverse, a modular exponentiation is easy: gx = g ⋅ g ⋅ ⋯ ⋅ g

x

Solving DLP can be hard (depending on the group ):G h = g ⋅ g ⋅ ⋯ ⋅ g

??

algorithms in O(log(x))
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Why do we care about discrete logarithms?

Many protocols use modular exponentiation where the exponent is a secret. 

Example 1: Diffie-Hellman key exchange [DH76] 

• Public data:   

• Shared key:  

g, ga, gb ∈ G

gab ∈ G

Example 2: pairing-based protocols 

• Identity-based encryption/signature schemes [BF01], [CC03] 

• Short signature schemes (eg, BLS signatures [BLS01]) 

Security based on assumptions that 
become false if DLP is broken.

[BF01]: D. Boneh, M. Franklin, Identity-based encryption from Weil pairing. Crypto’01

[CC03]: J. Cha, J. Cheon,  An identity-based signature from gap Diffie-Hellman groups. PKC’03

[BLS01]: D. Boneh, B. Lynn,  H. Shacham, Short signatures from the Weil pairing. Asiacrypt’01

[DH76]: W. Diffie, M. Hellman, New directions in cryptography. Trans. Info. Theory, 1976
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In my work

• Estimate the hardness of DLP in the groups considered by the protocols. 

• Look at implementation vulnerabilities during fast exponentiation.

How can we assess the security of protocols in which a modular exponentiation 
involving a secret exponent is performed?
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An example: EPID protocol in Intel SGX 
• What is EPID?  a protocol to allow remote attestation of a hardware platform without compromising the 

device’s identity. 

•The protocol includes a signing algorithm that uses pairings. 

                                             - secret key includes the element    

•How can we recover  ? 

                                      - During the protocol, consider a random secret nonce  

                                      - Compute an exponentiation       

                                      - Outputs the element     +   

f ∈R ℤq

f

r ∈ ℤq

Xr

s ← r cf ( hash of known values)c =
8



How can we recover the secret    ?f

 Since     +  ,    if we recover  , we directly get   .  s ← r cf r f

If we have as target  : 

1. Solve DLP to find exponent   in 3072-bit finite field  . 

2. Look at implementation vulnerabilities during the computation of .  

Xr

r 𝔽p12

Xr

The protocol uses a 256-bit elliptic curve Fp256BN (embedding degree 12).
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The discrete logarithm problem over finite fields

What group  should be considered?G • Prime finite fields  

• Finite fields  

• Elliptic curves over finite fields  

• Genus 2 hyperelliptic curves

𝔽×
p

𝔽×
pn

ℰ(𝔽p)
(ℤ/Nℤ, + )

Definition: Given a finite cyclic group  of order , a generator  and 
some element , find the element  such that 

G n g ∈ G
h ∈ G x ∈ [0,n) gx = h .
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Evaluating the hardness of DLP over 𝔽pn

•Many different algorithms to solve DLP in . 

•Their complexities depend on the relation between the characteristic  and the extension degree .

𝔽pn

p n

A useful notation: the L-notation Lpn(α, c) = exp((c + o(1))log(pn)αlog log(pn)1−α)

for  and  0 ⩽ α ⩽ 1 c > 0.

For complexities:  

• When , polynomial-time 

• When exponential-time

α → 0 : exp(c log log pn) ≈ (log pn)c

α → 1 : pcn,
In the middle: subexponential-time
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Finite field  with 𝔽pn p = Lpn(α, c)

Three families of finite fields

• Different algorithms are used in the different areas. 

• Algorithms don’t have the same complexity in each area.
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Index calculus algorithms

Consider a finite field  

Factor basis: small set of small elements 

Three main steps: 

• Relation collection: find relations between the elements of . 

• Linear algebra: solve a system of linear equations where the unknowns are the discrete logarithms of the 
elements of . 

• Individual logarithm/Descent: for a target element  , compute the discrete logarithm of 

𝔽pn

ℱ =

ℱ

ℱ

h ∈ 𝔽×
pn h .
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A lot of algorithms
• Small characteristics: Quasi-Polynomial algorithms [BGJT14, KW19] (with only a descent step) and 

Function Field Sieve [Adl94] 

• Medium and large characteristics: Number Field Sieve (NFS) [Gor93] and its variants

We focus on medium and large characteristic finite fields. 

Why?   

Finite fields used in practice for example  for                            
MNT-6 elliptic curves in zk-SNARKS.

𝔽p6

log log p

log n

Small char

Medium char

Large char

p = Lpn(2/3)

p = Lpn(1/3)

Quasi-Poly

NFS and variants
(with larger complexities)

NFS and variants
(with smaller complexities)
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[BGJT14]: R. Barbulescu, P. Gaudry, A. Joux, E. Thomé,  A heuristic quasi-polynomial time algorithm for discrete logarithm in finite fields of small characteristics. Eurocrypt’14

[Adl94]: L. Adleman, The Function Field Sieve. ANTS’94

[KW19]: T. Kleinjung, B. Wesolowski, Discrete logarithms in quasi-polynomial time in finite fields of fixed characteristic. 2019

[Gor98]: D. Gordon, Discrete Logarithms in GF(P) Using the Number Field Sieve. Journal on Discrete Mathematics’93
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Why do we do record computations?

It is important to choose the right key size.

•Too large: needlessly expensive computations 

•Too small: insecure

Running-time of discrete logarithm algorithms is hard to predict. 

Record computations provide information for assessing key lifetime.
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A first record computation with exTNFS
• Why did we choose exTNFS?

• Main difficulty: relation collection in dimension > 2.

n = ηκ

𝔽pn = 𝔽pηκ = 𝔽Pκ

[KB16]: T. Kim, R. Barbulescu, Extended tower number field sieve. Crypto’16 18

Specificity Algorithm Medium characteristic 2nd boundary Large characteristic
None NFS 96 48 64

MNFS 89.45 45.00 61.93
TNFS – – 64
MTNFS – – 61.93

Composite n exTNFS 48 – –
MexTNFS 45.00 – –

Special p SNFS 64
�
�+1
�

�
? 32

STNFS – – 32
Composite n and special p SexTNFS 32 ? 32



Collecting relations in TNFS

• Relation collection: find relations between the elements of . ℱ

More precisely, what does this mean? What is a relation?       Who is  ?ℱ

For TNFS:   

In our computation: 

•  

•  

•

R = ℤ[ι]/h(ι)

n = 6 = 3 × 2

deg h = η = 3

h = ι3 − ι + 1
R [X]

K1 � R [X] /(X4 + 1) K2 � R [X] /(aX2 + bX + c)

(R/pR)[X]/(aX2 + bX + c) ⇠= Fp6
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Collecting relations in TNFS: what is a relation?

ϕ(ι, X) = a(ι) − b(ι)X ∈

ϕ(ι, α1) = a(ι) − b(ι)α1

Equality in finite field = Relation
Test  for B-smoothness:N(ϕ(ι, α1))

prime factors smaller than B

R = ℤ[ι]/(ι3 − ι + 1)
R [X]

K1 � R [X] /(X4 + 1) K2 � R [X] /(aX2 + bX + c)

Fp6
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Collecting relations in TNFS: what is a relation?

   “ = “   ∏𝔭ei
i ∏𝔮 fj

j

R [X]

K1 � R [X] /(X4 + 1) K2 � R [X] /(aX2 + bX + c)

Fp6

Who is  ?ℱ
Prime ideals of small norm in the ring of 
integers of the intermediate number 
fields 

• Relation collection: find relations between the elements of . ℱ
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Relation collection looks for a set of linear polynomials ϕ(ι, X) = a(ι) − b(ι)X ∈ R[X]

1. with bounded coefficients 

2. such that  is B-smoothNi(a(ι) − b(ι)αi)

Collecting relations in TNFS

Concretely, let: a(ι) = a0 + a1ι + a2ι2

b(ι) = b0 + b1ι + b2ι2

Goal: find vectors     such that  c = (a0, a1, a2, b0, b1, b2) ∈ ℤ6

 where  is known as the sieving region.c ∈ 𝒮 𝒮

Norms divisible only by primes smaller than B: 
intersection of suitably constructed lattices c ∈ ℒ
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A new sieving region
Goal: find c ∈ 𝒮 ∩ ℒ

What is the dimension of ?𝒮           d = 2η = 6

24

We look at TNFS so dimension > 2 (since )  and -sphere   ( -norm).η ≥ 2 𝒮 = 6 ℓ2



Enumerating in 𝒮 ∩ ℒ

• Concretely what is ? ℒ

• The outputs of the enumeration are thus …

A lattice that describes the divisibility of the ideals by an ideal , known as a special-  
ideal and a prime ideal  in the intermediate number fields.

𝔔 q
𝔭

…vectors corresponding to  pairs whose norms are divisible by  and .(a, b) N(𝔔) N(𝔭)

25

for many 𝔭′ s

Why? high probability of B-smoothness



• Input: a lattice basis  

• Output: shortest non-zero lattice vector

b1, ⋯, bd

Schnorr-Euchner’s enumeration [SE94]

Idea: 

1. Construct an enumeration tree 

2. Consider projections of the lattice 

3. At each level of the tree, enumerate in an interval 

4. Depth-first search in the tree 
[SE94]: C-P. Schnorr, M. Euchner, Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems. Math. Program.’94
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• Input: a lattice basis  

• Output: vectors  such that 

b1, ⋯, b6

c = ∑ vibi | |c | | ≤ R

Schnorr-Euchner’s enumeration [SE94]

Idea: 

1. Construct an enumeration tree 

2. Consider projections of the lattice 

3. Exhaustive search of the coefficients  vi

27



Relation collection all together

⋮
Batch and  

ECM

potential relations 

-pairs with high  

probability  

for B-smoothness

(a, b)

Sieving
(enumeration)

(a1, b1)

(a2, b2)

∈ 𝒮

idea: find 
-pairs in  
intersect many 
lattices .

(a, b)
𝒮

ℒ𝔭

idea: test B-smoothness 
of the potential 
relations

⟺

doubly B-
smooth 

elements

relations

Remove duplicates
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What we needed for a record computation

• A fast sieving algorithm in dimension > 2. 

• Identifying and removing duplicate relations. 

• Adapting Schirokauer maps (virtual logarithms) to TNFS context. 

• Glue-code to branch into CADO-NFS. 

• A nice target:  .𝔽p6

29grvingt

in theory…

in practice…



𝔽p6
87Our 521-bit record computation

Total computation time (core hours):

Focus on relation collection:

[GGMT17]: L. Grémy, A. Guillevic, F. Morain, E. Thomé, Computing discrete logarithm in Fp6. Sac’17
[MR21]: G. McGuire, O. Robinson, Lattice Sieving in three dimensions for discrete log in medium characteristic. Journal of mathematical cryptology’21 30
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A discrete logarithm

target = (31415926535897932384626433 + 83279502884197169399375105ι
+82097494459230781640628620ι2) + x(89986280348253421170679821
+48086513282306647093844609ι + 55058223172535940812848111ι2)

Finite field:  with 87-bit prime , generator 𝔽p6 p g = x + ι

log(target) = 7627280816875322297766747970138378530353852976315498

31

Thank you for your attention!



A discrete logarithm (in more details)

target = (31415926535897932384626433 + 83279502884197169399375105ι
+82097494459230781640628620ι2) + x(89986280348253421170679821
+48086513282306647093844609ι + 55058223172535940812848111ι2)

 (87-bit prime)p = 0x6fb96ccdf61c1ea3582e57 

log(target) = 7627280816875322297766747970138378530353852976315498

n = 6

𝔽p6 = 𝔽p3[x]/(x2 + 64417723306991464419622353x + 1)

target = a(ι) + xb(ι) ∈ 𝔽p6 with:  of degree 2 and coefficients a(ι), b(ι) < p .

generator =  x + ι

Verification:  (x + ι)log(target) = target (mod ℓ-th powers)

Irreducible 
factor mod p, 
here f2



Choice of subgroup
Pohlig-Hellman: Initial target: 𝔽p6 Prime order subgroup of order ℓ |p6 − 1

We have the following factorisation:   p6 − 1 = (p − 1)(p + 1)(p2 + p + 1)(p2 − p + 1)

• 


• 


• 


•  6th-cyclotomic subgroup

p − 1 = |𝔽×
p |

p + 1 = |𝔽×
p2 | / |𝔽×

p |

p2 + p + 1 = |𝔽×
p3 | / |𝔽×

p |

p2 − p + 1 :

If  and  are of order     NFS in  of 87 bitsg h ℓ |p − 1 ⇒ g, h ∈ 𝔽×
p ⇒ 𝔽p

If  and  are of order     NFS in  of 175 bitsg h ℓ |p + 1 ⇒ g, h ∈ 𝔽×
p2 ⇒ 𝔽p2

If  and  are of order     NFS in  
of 261 bits

g h ℓ |p2 + p + 1 ⇒ g, h ∈ 𝔽×
p3 ⇒ 𝔽p3

Here, we can’t go in a smaller subgroup…

Attention: it is not the largest subgroup! 



Multiplicative group of a finite field
• The non-zero elements of a finite field form a multiplicative group.  

• This group is cyclic, so all non-zero elements can be expressed as powers of a single 
element called a primitive element of the field.

Example 1: prime order finite fields:  

                      multiplicative group:         =   

 

𝔽p ≅ ℤ/pℤ

𝔽×
p = {1,2,⋯, p − 1} 𝔽p∖{0}

Example 2: non-prime order finite fields:  

                       —-> elements are polynomials over  whose degree is less than . 

                      multiplicative group:          

 

𝔽pn ≅ 𝔽p[X]/(P)

𝔽p n

𝔽×
pn = {invertible polynomials} = 𝔽pn∖{0}

https://en.wikipedia.org/wiki/Multiplicative_group
https://en.wikipedia.org/wiki/Cyclic_group
https://en.wikipedia.org/wiki/Primitive_element_(finite_field)


Number field vs Function fields

Number field: Function field:
Finite extension of ℚ Finite extension of 𝔽p(ι)

K = ℚ[x]/( f ) K = 𝔽p(ι)[x]/( f )

ℚ = {p/q : p, q integers} 𝔽p(ι) = {p(ι)/q(ι) : p(ι), q(ι) ∈ 𝔽p[ι]}

Example: f = x2 − d
K = {x + y d : x, y ∈ ℚ}

Example: f = x2 − (ι3 + 2ι − 3)
K = {x0 + x1 ι3 + 2ι − 3 : x0, x1 ∈ 𝔽p(ι)}

Factor basis: prime ideals in 𝒪K Factor basis: prime ideals in 𝒪K
B-smoothness: compute norm of ideal = integer              
(from a resultant)

B-smoothness: compute norm of ideal = 
univariate polynomial (from a bivariate 
resultant)



Why do we choose a -sphere?d

The norm for   is greater than 
the norm for .

c′ ∈ C∖Sd(R)
c ∈ Sd(R)

When :d → ∞

Assumption: size of norms depends only on size of 
vector coordinates.

Sd(R)
C

Conclusion: choosing  leads to smaller norms.Sd(R)

Difference in norms increases!
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