Cryptanalyses de logarithmes discrets *Journées de la sécurité GDR 2022*

Gabrielle De Micheli Université de Californie, San Diego

Joint work with Pierrick Gaudry and Cécile Pierrot

Hard problems for Cryptography

Use (hopefully) intractable problems to construct cryptographic primitives.

start from...

- factorisation
- discrete Logarithm
- · lattice problems
- · isogeny problems

© ...

Hard problems for Cryptography

Use (hopefully) intractable problems to construct cryptographic primitives.

start from...

- factorisation
- discrete Logarithm
- · lattice problems
- · isogeny problems

© ...

What is a discrete logarithm?

Definition: Given a finite cyclic group G of order n, a generator $g \in G$ and some element $h \in G$, the discrete logarithm of h in base g is the element $x \in [0,n)$ such that $g^x = h$.

Example:
$$G = \mathbb{Z}_7^{\times}, g = 3,$$

 $h = 6 \in \mathbb{Z}_7^{\times},$
 $g^1 \equiv 3 \pmod{7}$
 $g^2 = 9 \equiv 2 \pmod{7}$
 $g^3 = 27 \equiv 6 \pmod{7}$

The discrete logarithm of h in base g is 3.

The discrete logarithm problem (DLP)

Computing the inverse, a modular exponentiation algorithms in $O(\log(x))$

Solving DLP can be hard (depending on the grou

Definition: Given a finite cyclic group G of order n_i a generator $g \in G$ and some element $h \in G$, find the element $x \in [0,n)$ such that $g^x = h$.

on is easy:

$$g^{x} = \underbrace{g \cdot g \cdot \cdots \cdot g}_{x}$$
(x))

$$h = \underbrace{g \cdot g \cdot \cdots \cdot g}_{22}$$

Why do we care about discrete logarithms?

Many protocols use modular exponentiation where the exponent is a secret.

Example 1: Diffie-Hellman key exchange [DH76]

- Public data: $g, g^a, g^b \in G$
- Shared key: $g^{ab} \in G$

Technical Details

Example 2: pairing-based protocols

- Identity-based encryption/signature schemes [BF01], [CC03]
- Short signature schemes (eg, BLS signatures [BLS01])

[DH76]: W. Diffie, M. Hellman, New directions in cryptography. Trans. Info. Theory, 1976 [CC03]: J. Cha, J. Cheon, An identity-based signature from gap Diffie-Hellman groups. PKC'03 [BF01]: D. Boneh, M. Franklin, Identity-based encryption from Weil pairing. Crypto'01 [BLS01]: D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing. Asiacrypt'01

Security based on assumptions that become false if DLP is broken.

In my work

involving a secret exponent is performed?

How can we assess the security of protocols in which a modular exponentiation

• Estimate the hardness of DLP in the groups considered by the protocols. • Look at implementation vulnerabilities during fast exponentiation.

An example: EPID protocol in Intel SGX

- device's identity.
- •The protocol includes a signing algorithm that uses pairings.
 - secret key includes the element $f \in_R \mathbb{Z}_a$
- •How can we recover f?
 - During the protocol, consider a random secret nonce $r \in \mathbb{Z}_{a}$
 - Compute an exponentiation X^r
 - Outputs the element $s \leftarrow r + cf$

• What is EPID? a protocol to allow remote attestation of a hardware platform without compromising the

(c = hash of known values)

How can we recover the secret f?

Since $s \leftarrow r + cf$, if we recover r, we directly get f.

The protocol uses a 256-bit elliptic curve Fp256BN (embedding degree 12).

If we have as target X^r :

1. Solve DLP to find exponent r in 3072-bit finite field $\mathbb{F}_{p^{12}}$.

2. Look at implementation vulnerabilities during the computation of X^r .

In my work

involving a secret exponent is performed?

How can we assess the security of protocols in which a modular exponentiation

• Estimate the hardness of DLP in the groups considered by the protocols.

Look at implementation vulnerabilities during fast exponentiation.

The discrete logarithm problem over finite fields

What group G should be considered?

Definition: Given a finite cyclic group G of order n, a generator $g \in G$ and some element $h \in G$, find the element $x \in [0,n)$ such that $g^x = h$.

- Prime finite fields \mathbb{F}_p^{\times}
- Finite fields $\mathbb{F}_{p^n}^{\times}$
- Elliptic curves over finite fields $\mathscr{E}(\mathbb{F}_p)$
- Genus 2 hyperelliptic curves

The discrete logarithm problem over finite fields

What group G should be considered? • Prime finite fields \mathbb{F}_p^{\times}

Definition: Given a finite cyclic group G of order n, a generator $g \in G$ and some element $h \in G$, find the element $x \in [0,n)$ such that $g^x = h$.

• Finite fields $\mathbb{F}_{p^n}^{\times}$

• Elliptic curves over finite fields $\mathscr{E}(\mathbb{F}_p)$

• Genus 2 hyperelliptic curves

Evaluating the hardness of DLP over \mathbb{F}_{p^n}

- Many different algorithms to solve DLP in \mathbb{F}_{p^n} .

A useful notation: the L-notation

 $|L_{p^n}(\alpha,c)|$

For complexities:

- When $\alpha \to 0$: $\exp(c \log \log p^n) \approx (\log p^n)^c$, polynomial-time
- When $\alpha \to 1: p^{cn}$, exponential-time

•Their complexities depend on the relation between the characteristic p and the extension degree n.

$$= \exp((c + o(1))\log(p^n)^{\alpha}\log\log(p^n)^{1-\alpha})$$

for $0 \leq \alpha \leq 1$ and c > 0.

In the <u>middle</u>: subexponential-time

Three families of finite fields

Finite field \mathbb{F}_{p^n} with $p = L_{p^n}(\alpha, c)$

- Different algorithms are used in the different areas.
- Algorithms don't have the same complexity in each area.

 α

Index calculus algorithms

Consider a finite field \mathbb{F}_{p^n}

Factor basis: $\mathcal{F} = \text{small set of small elements}$

Three main steps:

- Relation collection: find relations between the elements of \mathcal{F} .
- Linear algebra: solve a system of linear equations where the unknowns are the discrete logarithms of the elements of \mathcal{F} .

• Individual logarithm/Descent: for a target element $h \in \mathbb{F}_{p^n}^{\times}$, compute the discrete logarithm of h.

A lot of algorithms

- Function Field Sieve [Adl94]
- Medium and large characteristics: Number Field Sieve (NFS) [Gor93] and its variants We focus on <u>medium and large characteristic</u> finite fields. Why?

Finite fields used in practice for example \mathbb{F}_{p^6} for MNT-6 elliptic curves in zk-SNARKS.

[Adl94]: L. Adleman, The Function Field Sieve. ANTS'94

[Gor98]: D. Gordon, Discrete Logarithms in GF(P) Using the Number Field Sieve. Journal on Discrete Mathematics'93 [BGJT14]: R. Barbulescu, P. Gaudry, A. Joux, E. Thomé, A heuristic quasi-polynomial time algorithm for discrete logarithm in finite fields of small characteristics. Eurocrypt'14 [KW19]: T. Kleinjung, B. Wesolowski, Discrete logarithms in quasi-polynomial time in finite fields of fixed characteristic. 2019

• Small characteristics: Quasi-Polynomial algorithms [BGJT14, KW19] (with only a descent step) and

Why do we do record computations?

It is important to choose the right key size.

- •Too large: needlessly expensive compute
- •Too small: insecure

Running-time of discrete logarithm algorithms is hard to predict. Record computations provide information for assessing key lifetime.

	Agency	Date	Size of group	Size
ations	NIST	2019-2030	2048	2
		> 2030	3072	2
	ANSSI	2021-2030	2048	2
		> 2030	3072	2

A first record computation with exTNFS

• Why did we choose exTNFS?

• Main difficulty: relation collection in dimension > 2.

Algorithm	Medium characteristic	2nd boundary	Large characte
NFS	96	48	64
MNFS	89.45	45.00	61.93
TNFS	_		64
MTNFS			61.93
exTNFS	48		
MexTNFS	45.00	_	
SNFS	$64\left(\frac{\lambda+1}{\lambda}\right)$	*	32
STNFS			32
SexTNFS	32	*	32

Collecting relations in TNFS

Collecting relations in TNFS

More precisely, what does this mean?

Collecting relations in TNFS: what is a relation?

$\phi(\iota, X) = a(\iota) - b(\iota)X \in R[X]$ $K_1 \supset R[X]/(X^4+1)$ $\phi(\iota, \alpha_1) = a(\iota) - b(\iota)\alpha_1$

Test $N(\phi(\iota, \alpha_1))$ for B-smoothness:

Equality in finite field = Relation

prime factors smaller than B

$R = \mathbb{Z}[\iota]/(\iota^3 - \iota + 1)$

Collecting relations in TNFS: what is a relation?

• Relation collection: find relations between the elements of \mathcal{F} .

 $K_1 \supset R[X] / (X^4 + 1)$

Who is \mathcal{F} ?

Prime ideals of small norm in the ring of integers of the intermediate number fields

Collecting relations in TNFS

Relation collection looks for a set of linear polynomials

1. with bounded coefficients $c \in \mathcal{S}$ where \mathcal{S} is known as the sieving region.

2. such that $N_i(a(\iota) - b(\iota)\alpha_i)$ is B-smooth

 $a(i) = a_0 + a_1 i + a_2 i^2$ Concretely, let: $b(\iota) = b_0 + b_1 \iota + b_2 \iota^2$

Goal: find vectors $c = (a_0, a_1, a_2, b_0, b_1, b_2) \in \mathbb{Z}^6$ such that

$\phi(\iota, X) = a(\iota) - b(\iota)X \in R[X]$

Norms divisible only by primes smaller than B: $c \in \operatorname{intersection}$ of suitably constructed lattices \mathscr{L}

A new sieving region

What is the dimension of S? $d = 2\eta = 6$

We look at TNFS so dimension > 2 (since $\eta \ge 2$) and $\mathcal{S} = 6$ -sphere (ℓ_2 -norm).

Goal: find $c \in \mathcal{S} \cap \mathcal{L}$

Enumerating in $\mathcal{S} \cap \mathcal{L}$

• Concretely what is \mathscr{L} ?

A lattice that describes the divisibility of the ideals by an ideal Ω , known as a special-q ideal and a prime ideal p in the intermediate number fields. for many $\mathfrak{p}'s$ • The outputs of the enumeration are thus ...

...vectors corresponding to (a, b) pairs whose norms are divisible by $N(\mathfrak{Q})$ and $N(\mathfrak{p})$.

Why? high probability of B-smoothness

Schnorr-Euchner's enumeration [SE94]

- Input: a lattice basis $\mathbf{b}_1, \cdots, \mathbf{b}_d$
- Output: shortest non-zero lattice vector

Idea:

- 1. Construct an enumeration tree
- 2. Consider projections of the lattice
- 3. At each level of the tree, enumerate in an interval

4. Depth-first search in the tree

[SE94]: C-P. Schnorr, M. Euchner, Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems. Math. Program.'94

Schnorr-Euchner's enumeration [SE94]

- Input: a lattice basis $\mathbf{b}_1, \cdots, \mathbf{b}_6$
- Output: vectors $c = \sum v_i \mathbf{b}_i$ such that $||c|| \le R$

Idea:

- 1. Construct an enumeration tree
- 2. Consider projections of the lattice
- 3. Exhaustive search of the coefficients v_i

Relation collection all together

What we needed for a record computation

- A fast sieving algorithm in dimension > 2.
- Identifying and removing duplicate relations.
- Adapting Schirokauer maps (virtual logarithms) to TNFS context.
- Glue-code to branch into CADO-NFS.
- A nice target: \mathbb{F}_{p^6} .

in theory...

in practice... → grvingt

Total computation time (core hours):

Relation Collection	Linear algebra	Schirokauer maps	Descent	Overa
$23,\!300$	1,403	40	55	24,

Focus on relation collection:

[GGMT17]: L. Grémy, A. Guillevic, F. Morain, E. Thomé, Computing discrete logarithm in Fp6. Sac'17 [MR21]: G. McGuire, O. Robinson, Lattice Sieving in three dimensions for discrete log in medium characteristic. Journal of mathematical cryptology'21

meters	[GGMT17]	[MR21]	This work
rithm	NFS	NFS	TNFS
ze (bits)	422	423	521
limension	3	3	6
ig time	$201,\!600$	$69,\!120$	$23,\!300$

A discrete logarithm

Finite field: \mathbb{F}_{p^6} with 87-bit prime p, generator $g = x + \iota$

 $target = (31415926535897932384626433 + 83279502884197169399375105i + 82097494459230781640628620i^{2}) + x(89986280348253421170679821 + 48086513282306647093844609i + 55058223172535940812848111i^{2})$

log(target) = 7627280816875322297766747970138378530353852976315498

Thank you for your attention!

A discrete logarithm (in more details)

p = 0x6fb96ccdf61c1ea3582e57 (87-bit prime)

 $\mathbb{F}_{p^6} = \mathbb{F}_{p^3}[x]/(x^2 + 64417723306991464419622353x + 1)$ target = (31415926535897932384626433 + 83279502884197169399375105i)

generator = $x + \iota$

log(target) = 7627280816875322297766747970138378530353852976315498

Verification: $(x + i)^{\log(target)} = target \pmod{\ell}$ -th powers)

n = 6

Irreducible factor mod p, here f2

target = $a(\iota) + xb(\iota) \in \mathbb{F}_{p^6}$ with: $a(\iota), b(\iota)$ of degree 2 and coefficients < p.

 $+82097494459230781640628620i^{2}) + x(89986280348253421170679821)$

 $+48086513282306647093844609i + 55058223172535940812848111i^{2})$

Choice of subgroup Initial target: \mathbb{F}_{p^6} Pohlig-Hellman: Prime order subgroup of order $\mathscr{C} \mid p^6 - 1$ • $p - 1 = |\mathbb{F}_p^{\times}|$ If g and h are of order $\mathscr{C}|p - 1 \Rightarrow g, h \in \mathbb{F}_p^{\times} \Rightarrow$ NFS in \mathbb{F}_p of 87 bits • $p^2 + p + 1 = |\mathbb{F}_{p^3}^{\times}| / |\mathbb{F}_p^{\times}|$ If g and h are of order $\ell |p^2 + p + 1 \Rightarrow g, h \in \mathbb{F}_{p^3}^{\times} \Rightarrow \text{NFS in } \mathbb{F}_{p^3}$ of 261 bits

• $p^2 - p + 1$: 6th-cyclotomic subgroup Attention: it is not the largest subgroup!

We have the following factorisation: $p^6 - 1 = (p - 1)(p + 1)(p^2 + p + 1)(p^2 - p + 1)$ • $p + 1 = |\mathbb{F}_{p^2}^{\times}| / |\mathbb{F}_p^{\times}|$ If g and h are of order $\mathscr{C}|p + 1 \Rightarrow g, h \in \mathbb{F}_{p^2}^{\times} \Rightarrow$ NFS in \mathbb{F}_{p^2} of 175 bits

Here, we can't go in a smaller subgroup...

Multiplicative group of a finite field

• The non-zero elements of a finite field form a multiplicative group.

• This group is cyclic, so all non-zero elements can be expressed as powers of a single element called a primitive element of the field.

Example 1: prime order finite fields: $\mathbb{F}_p \cong \mathbb{Z}/I$

multiplicative group: $\mathbb{F}_{p}^{\times} = \{1\}$

Example 2: non-prime order finite fields: $\mathbb{F}_{p^n} \cong \mathbb{F}_p[X]/(P)$

--> elements are polynomials over \mathbb{F}_{p} whose degree is less than n.

multiplicative group:

$$p\mathbb{Z}$$

$$,2,\cdots,p-1\} = \mathbb{F}_p \setminus \{0\}$$

 $\mathbb{F}_{p^n}^{\times} = \{\text{invertible polynomials}\} = \mathbb{F}_{p^n} \setminus \{0\}$

Number field vs Function fields

Number field:

Finite extension of \mathbb{Q}

$$\mathbb{Q} = \{p/q : p, q \text{ integers}\}$$

$$K = \mathbb{Q}[x]/(f)$$

Example:
$$f = x^2 - d$$

 $K = \{x + y\sqrt{d} : x, y \in \mathbb{Q}\}$

Factor basis: prime ideals in \mathcal{O}_K

B-smoothness: compute norm of ideal = integer (from a resultant)

Function field:

Finite extension of $\mathbb{F}_{p}(\iota)$ $\mathbb{F}_p(\iota) = \{p(\iota)/q(\iota) : p(\iota), q(\iota) \in \mathbb{F}_p[\iota]\}$ $K = \mathbb{F}_p(\iota)[x]/(f)$ Example: $f = x^2 - (i^3 + 2i - 3)$ $K = \{x_0 + x_1\sqrt{\iota^3 + 2\iota - 3} : x_0, x_1 \in \mathbb{F}_n(\iota)\}$

Factor basis: prime ideals in \mathcal{O}_K

B-smoothness: compute norm of ideal = univariate polynomial (from a bivariate resultant)

Why do we choose a d-sphere?

Assumption: size of norms depends only on size of vector coordinates.

The norm for $c' \in C \setminus S_d(R)$ is greater than the norm for $c \in S_d(R)$.

When $d \rightarrow \infty$:

Difference in norms increases!

Conclusion: choosing $S_d(R)$ leads to smaller norms.

