Cryptanalysis of GEA-1 and GEA-2

Christof Beierle, Patrick Derbez, Gregor Leander, Gaëtan Leurent, Håvard Raddum, Yann Rotella, David Rupprecht, and Lukas Stennes

Journée GDR Sécu

GEA: GPRS Encryption Algorithm

- GPRS is the data protocol of 2G telephony (sometimes called 2.5G)
- Improved GPRS: EDGE (sometimes called 2.75G)
- Designed by ETSI SAGE in 1998
- Widely used in the early 2000s
- The first iPhone didn't support 3G (2008)
- 3G deployment: 2001-2010-ish
- 2G has been sunset in some countries, but still used in France
- Fallback when 3G/4G/5G not available
- Used by some payment terminals

2G security

- Encryption of packets between the phone and the antenna
- Algorithms designed in secret in the 1980s and 1990s, not published

Voice

A5/1 64-bit key, 64-bit state

- Partial leak in 1994, Reverse engineered in 1999
- Best attack: < 1 minute
- In practice: rainbow tables (precomputation of 2^{57})
A5/2 64-bit key, 81-bit state
- Reverse engineered in 1999
- Best attack: 2^{16} ("export version")
- Deprecated in 2007

A5/3 KASUMI (public) designed in 2002

GEA-3 KASUMI (public) designed in 2002

Stream ciphers

- Encrypt a message with a secret key k
- Keystream $z(k)=\left(z^{(0)}, z^{(1)}, z^{(2)}, \ldots\right)$
- $c=E_{k}(m)=m \oplus z$

Stream cipher

- Internal state $S \in \mathcal{S}$
- State update function $\mathcal{S} \rightarrow \mathcal{S}$
- Extraction function $\mathrm{f}: \mathcal{S} \rightarrow\{0,1\}$
- Initialization k, IV $\rightarrow \mathcal{S}$

$$
S^{(0)}=\operatorname{Init}(k) \quad S^{(i+1)}=\operatorname{Update}\left(S^{(i)}\right) \quad z^{(i)}=f\left(S^{(i)}\right)
$$

Filter generator

Linear Feedback Shift Register - LFSR (Galois configuration)

- State $\mathrm{S}: \mathrm{n}$ bits $\left(\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}-1}\right)$
- Update depending on taps $\mathcal{A}: s_{i}^{(t+1)}= \begin{cases}s_{i+1}^{(t)} \\ s_{i+1}^{(t)} & \text { else }\end{cases}$
- Polynomial representation: $\mathrm{Q}=\mathrm{X}^{\mathrm{n}}+\sum_{\mathrm{i} \in \mathcal{A}} \mathrm{X}^{\mathrm{i}}$
- If Q is primitive, update corresponds to multiplication by a primitive element
- Maximal period if $S \neq 0$

- Filter function to extract keystream from internal state (balanced, non-linear)
- Construction used in A5/1, A5/2, Bluetooth E0

Filter generator

Linear Feedback Shift Register - LFSR (Galois configuration)

- State $\mathrm{S}: \mathrm{n}$ bits $\left(\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}-1}\right)$
- Update depending on taps $\mathcal{A}: s_{i}^{(\mathrm{t}+1)}= \begin{cases}s_{i+1}^{(\mathrm{t})} \oplus \mathrm{s}_{0}^{(\mathrm{t})} & \text { if } \mathrm{i} \in \mathcal{A} \\ s_{i+1}^{(\mathrm{t})} & \text { else }\end{cases}$
- Polynomial representation: $\mathrm{Q}=\mathrm{X}^{\mathrm{n}}+\sum_{\mathrm{i} \in \mathcal{A}} \mathrm{X}^{\mathrm{i}}$
- If Q is primitive, update corresponds to multiplication by a primitive element
- Maximal period if $S \neq 0$

- Filter function to extract keystream from internal state (balanced, non-linear)
- Construction used in A5/1, A5/2, Bluetooth E0

GEA-1 design

- Received specification from a "source"
- Three filter generators
- A (31 bits)
$\hookrightarrow \operatorname{Gen}_{\mathrm{A}}(\mathrm{A})$
- B (32 bits)
$\hookrightarrow \operatorname{Gen}_{\mathrm{B}}(\mathrm{B})$
- C (33 bits)

$$
\hookrightarrow \operatorname{Gen}_{C}(\mathrm{C})
$$

- Non-linear filtering

- degree-4 function f
- The keystream is $z=\operatorname{Gen}_{A}(A) \oplus \operatorname{Gen}_{B}(B) \oplus \operatorname{Gen}_{C}(C)$

GEA-1 initialization

1 Generate a 64-bit value S from the key and IV

- Using a NLFSR (non linear)

2 Initialize the three LFSRs from S

- Set A, B, C to zero
- Clock them 64 times, xor s_{i} into the feedback function
- A uses $s_{0}, s_{1}, \ldots, s_{64}$
- B uses $s_{16}, s_{17}, \ldots, s_{15}$ (shifted by 16 positions)
- C uses $\mathrm{s}_{32}, \mathrm{~s}_{33}, \ldots, \mathrm{~s}_{31}$ (shifted by 32 positions)
- Initialization of A, B, C from S is linear
- $\mathrm{S} \mapsto \mathrm{A}: 64$ bit $\rightarrow 31$ bits, rank 31
- $\mathrm{S} \mapsto \mathrm{B}: 64$ bit $\rightarrow 32$ bits, rank 32
- $\mathrm{S} \mapsto \mathrm{C}: 64$ bit $\rightarrow 33$ bits, rank 33

GEA-1 initialization

- Initialization of A, B, C from S is linear
- $\mathrm{S} \mapsto \mathrm{A}: 64$ bit $\rightarrow 31$ bits, rank 31
- $S \mapsto(A, B, C): 64$ bit $\rightarrow 96$ bits, rank 64
- $\mathrm{S} \mapsto \mathrm{B}: 64$ bit $\rightarrow 32$ bits, rank 32
- $\mathrm{S} \mapsto \mathrm{C}: 64$ bit $\rightarrow 33$ bits, rank 33

GEA-1 initialization

- Initialization of A, B, C from S is linear
- $\mathrm{S} \mapsto \mathrm{A}: 64$ bit $\rightarrow 31$ bits, rank 31
- $\mathrm{S} \mapsto(\mathrm{A}, \mathrm{B}, \mathrm{C}): 64$ bit $\rightarrow 96$ bits, rank 64
- $\mathrm{S} \mapsto \mathrm{B}: 64$ bit $\rightarrow 32$ bits, rank 32
- $\mathrm{S} \mapsto \mathrm{C}: 64$ bit $\rightarrow 33$ bits, rank 33
- $\mathrm{S} \mapsto(\mathrm{A}, \mathrm{C}): 64$ bit $\rightarrow 64$ bits, rank 40

Meet-in-the-Middle attack

- There are 2^{40} possible initial states for (A, C)
- There are 2^{32} possible initial states for B
- The keystream is $z=\operatorname{Gen}_{A}(A) \oplus \operatorname{Gen}_{B}(B) \oplus \operatorname{Gen}_{C}(C)$
- Split in two independent parts: $\operatorname{Gen}_{B}(B)=z \oplus \operatorname{Gen}_{A}(A) \oplus \operatorname{Gen}_{C}(C)$

Meet-in-the-Middle attack / collision search

0 Capture frame with known plaintext, recover z
1 For all $2^{32} B$, compute $\mathrm{Gen}_{\mathrm{B}}(B)$ and store in a hash table
2 For all $2^{40}(A, C)$, compute $z \oplus \operatorname{Gen}_{A}(A) \oplus G e n_{C}(C)$ and look up in the table

- Recover the key from the initial state (A, B, C)
- Complexity
- 64 bits of known keystream
- 2^{40} Time
- 2^{32} Memory

Backdoor?

GEA-1 was likely weakened deliberately

- Mapping $S \mapsto A, C$ from 64 bits to 64 bits
- Having rank 40 is very unlikely
- Experiments with initialization of the same type
- With 1 million experiments, lowest rank found is 55
- Follow-up work to build LFSRs and shift with low rank [Beierle, Felke \& Leander, 2021]
- In the 1990's, cryptography was subjected to export regulation
- In France, 40-bit security cryptography can be exported after 1998
- The design document states:
"the algorithm should be generally exportable taking into account current export restrictions" "the strength should be optimized taking into account the above requirement"
- Other examples of "export" ciphersuites: TLS, A5/2 in GSM

GEA-2 design

- Additional register D (29 bits) $\hookrightarrow \operatorname{Gen}_{\mathrm{D}}(\mathrm{D})$

GEA-2

GEA-2 design

Meet-in-the-Middle attack

- The keystream is $z=\operatorname{Gen}_{A}(A) \oplus \operatorname{Gen}_{B}(B) \oplus \operatorname{Gen}_{C}(C) \oplus \operatorname{Gen}_{D}(D)$
- Register sizes: 31 (A), 32 (B), 33(C), 29 (D)
- Standard MitM: $\operatorname{Gen}_{A}(A) \oplus \operatorname{Gen}_{B}(B)=z \oplus \operatorname{Gen}_{C}(C) \oplus \operatorname{Gen}_{D}(D)$
- Complexity $\approx 2^{63}((A, B)$ is 63 bits, (C, $D)$ is 62 bits)
- No unexpected rank loss

Algebraic attack: linearisation

Writing $Z^{(i)}=\operatorname{Gen}_{A}^{(i)}(A) \oplus \operatorname{Gen}_{B}^{(i)}(B) \oplus \operatorname{Gen}_{C}^{(i)}(C) \oplus \operatorname{Gen}_{D}^{(i)}(D)$ as a polynomial

- $31+32+33+29=125$ variables
- Each keystream bit $z^{(i)}$ gives an equation
- Small number of possible monomials
- LFSR update is linear
- The filtering function f has algebraic degree 4
- $\sum_{i=1}^{4}\binom{31}{i}+\binom{32}{i}+\binom{33}{i}+\binom{29}{i}=152682$ monomials
- Linearisation attack:
- Consider each monomial as an independent variable
- Solve the linear system
- Complexity $152682^{3} \approx 2^{52}$
- Requires about 152682 bits of keystream z
- Problem: GPRS frame is at most 12800 bits

Partial guessing

- We can reduce the number of monomial below 12800 by guessing some state bits
- For instance: guess 15 bits of $A, 15$ bits of $B, 16$ bits of $C, 13$ bits of D
- Remaining variables: 16 (A) +17 (B) +17 (C) +16 (D)
- $\sum_{i=1}^{4}\binom{16}{i}+\binom{17}{i}+\binom{17}{i}+\binom{16}{i}=11468$ monomials (<12800)
- Solve the remaining system with linear algebra
- Complexity $\approx 2^{59} \times 12800^{3}$

Hybrid Meet-in-the-Middle

Strategy

1 Guess parts of A and D
2 Find relations that depend only on $\mathrm{B}, \mathrm{C}: \phi(\mathrm{B}) \oplus \psi(\mathrm{C})=\xi(\mathrm{z})$

- Guess 11 bits of A and 9 bits of D
- Write $w^{(i)}=\operatorname{Gen}_{A}^{(i)}(A) \oplus \operatorname{Gen}_{D}^{(i)}(D)$ as a polynomial in the remaining variables (20+20)
- Look for masks m (length 12800) such that $m \cdot \mathrm{w}_{0} \ldots \mathrm{w}_{12799}$ is constant
- $\sum_{i=1}^{4}\binom{20}{i}+\binom{20}{i}=12390$ non-constant monomials
- Using linearisation, space of good masks of dimension 12800-12390=410
- Build linear function L from 64 independent masks:
$\Rightarrow z=\operatorname{Gen}_{D}(D) \oplus \operatorname{Gen}_{A}(A) \oplus \operatorname{Gen}_{B}(B) \oplus \operatorname{Gen}_{C}(C)$
- $\mathrm{L}(\mathrm{z})=\mathrm{L}\left(\operatorname{Gen}_{\mathrm{D}}(\mathrm{D})\right) \oplus \mathrm{L}\left(\operatorname{Gen}_{\mathrm{A}}(\mathrm{A})\right) \oplus \mathrm{L}\left(\operatorname{Gen}_{\mathrm{B}}(\mathrm{B})\right) \oplus \mathrm{L}\left(\operatorname{Gen}_{C}(\mathrm{C})\right)$

Linearization: toy example

$$
\begin{aligned}
\mathbf{w}_{0} \oplus w_{2} \oplus w_{9} \oplus w_{10} & =1 \\
w_{2} \oplus w_{5} \oplus w_{7} \oplus w_{11} & =0 \\
w_{5} \oplus w_{8} & =1
\end{aligned}
$$

Hybrid Meet-in-the-Middle

Precomputation

- For each $2^{20}(\mathrm{a}, \mathrm{d})$ (partial guess of A and D)

1 Compute linear combinations of w independent of remaining (A, D)
2 Deduce functions $\phi_{\mathrm{a}, \mathrm{d}}, \psi_{\mathrm{a}, \mathrm{d}}, \xi_{\mathrm{a}, \mathrm{d}}$ such that $\phi_{\mathrm{a}, \mathrm{d}}(\mathrm{B})=\psi_{\mathrm{a}, \mathrm{d}}(\mathrm{C}) \oplus \xi_{\mathrm{a}, \mathrm{d}}(\mathrm{z})$

- Complexity: $2^{20} \times 12800^{3} / 64 \approx 2^{54.9} 64$-bit operations

Meet-in-the-Middle attack / collision search

- For each $2^{20}(\mathrm{a}, \mathrm{d})$ (partial guess of A and D)

1 For all $2^{32} \mathrm{~B}$, compute $\phi_{\mathrm{a}, \mathrm{d}}(\mathrm{B})$ and store in a hash table
2 For all $2^{33} \mathrm{C}$, compute $\xi_{\mathrm{a}, \mathrm{d}}(\mathrm{z}) \oplus \psi_{\mathrm{a}, \mathrm{d}}(\mathrm{C})$ and look up in the table

- If there is match, recover key candidate from a, B, C, d
- Evaluation of $\phi_{\mathrm{a}, \mathrm{d}}, \psi_{\mathrm{a}, \mathrm{d}}$ as polynomials with amortized cost 4 [BCCCNSY, CHES'10]
- Complexity: $2^{52}+2^{53} \approx 2^{53.6}$ memory access; $2^{54}+2^{55} \approx 2^{55.6} 64$-bit operations

Improvement: Time-Data Tradeoff

- Classical technique: target one state out of many
- We target the first 753 states; 753 keystreams of length 12047
- $\left(\mathrm{A}^{(0)}, \mathrm{B}^{(0)}, \mathrm{C}^{(0)}, \mathrm{D}^{(0)}\right)$ produces keystream $\mathrm{z}^{(0)} \mathrm{z}^{(1)} \mathrm{z}^{(2)}$
- $\left(A^{(1)}, B^{(1)}, C^{(1)}, D^{(1)}\right)$ produces keystream $z^{(1)} z^{(2)} \mathbf{z}^{(3)}$..
- $\left(\mathrm{A}^{(2)}, \mathrm{B}^{(2)}, \mathrm{C}^{(2)}, \mathrm{D}^{(2)}\right)$ produces keystream $\mathrm{z}^{(2)} \mathrm{z}^{(3)} \mathrm{z}^{(4)}$...
- Guess 11 bits of A and 10 bits of D
- Write $w^{(i)}=\operatorname{Gen}_{A}^{(i)}(A) \oplus \operatorname{Gen}_{D}^{(i)}(D)$ as a polynomial in the remaining variables (19+20)
- Look for masks m (length 12047) such that $m \cdot w^{(0)} \ldots w^{(12046)}$ is constant
- $\sum_{i=1}^{4}\binom{19}{i}+\binom{20}{i}=11230$ non-constant monomials
- Using linearisation, space of good masks of dimension 12047-11230 = 817
- Filter masks such that $m \cdot z^{(0)} \ldots z^{(12046)}=m \cdot z^{(1)} \ldots z^{(12047)}=m \cdot z^{(2)} \ldots z^{(12048)}=\ldots$
- Space of good masks of dimension 817-752=65
(752 constraints)
- Build linear function L from 64 independent masks:
$z^{(s)} z^{(s+1)} \ldots=\operatorname{Gen}_{\mathrm{D}}\left(\mathrm{D}^{(s)}\right) \oplus \operatorname{Gen}_{A}\left(\mathrm{~A}^{(s)}\right) \oplus \operatorname{Gen}_{\mathrm{B}}\left(\mathrm{B}^{(s)}\right) \oplus \operatorname{Gen}_{\mathrm{C}}\left(\mathrm{C}^{(s)}\right)$
$\underbrace{\mathrm{L}\left(\mathbf{z}^{(s)} \mathbf{Z}^{(s+1)} \ldots\right)}_{\text {independent of } \mathrm{s}}=\underbrace{\mathrm{L}\left(\operatorname{Gen}_{D}\left(\mathrm{D}^{(s)}\right)\right) \oplus \mathrm{L}\left(\operatorname{Gen}_{A}\left(\mathrm{~A}^{(s)}\right)\right)}_{\text {constant }} \oplus \underbrace{\mathrm{L}\left(\operatorname{Gen}_{\mathrm{B}}\left(\mathrm{B}^{(s)}\right)\right)}_{\phi\left(\mathrm{B}^{(s)}\right)} \oplus \underbrace{\mathrm{L}\left(\operatorname{Gen}_{C}\left(\mathrm{C}^{(s)}\right)\right)}_{\psi\left(\mathrm{C}^{(s)}\right)}$

Hybrid Meet-in-the-Middle with Time-Data Tradeoff

Meet-in-the-Middle attack / collision search

- For each 2^{21} (a, d) (partial guess of A and D)

0 Build functions $\phi_{\mathrm{a}, \mathrm{d}}, \psi_{\mathrm{a}, \mathrm{d}}, \xi_{\mathrm{a}, \mathrm{d}}$ such that $\phi_{\mathrm{a}, \mathrm{d}}(\mathrm{B}) \oplus \psi_{\mathrm{a}, \mathrm{d}}(\mathrm{C})=\xi_{\mathrm{a}, \mathrm{d}}\left(\mathrm{z}_{\mathrm{s}} z_{\mathrm{s}+1} \ldots\right)$
1 For all $2^{32} \mathrm{~B}$, compute $\phi_{\mathrm{a}, \mathrm{d}}(\mathrm{B})$ and store in a hash table
2 For all $2^{33} \mathrm{C}$, compute $\xi_{\mathrm{a}, \mathrm{d}}(\mathrm{z}) \oplus \psi_{\mathrm{a}, \mathrm{d}}(\mathrm{C})$ and look up in table

- If there is match, recover key candidate from a, B, C, d
- On average, only $2^{21} / 753 \approx 2^{11.4}$ guesses until it matches one of the 753 targets
- Complexity: $2^{11.4} \times 2^{33.6} \approx 2^{45}$ memory access; $4 \times 2^{45} \approx 2^{47} 64$-bit operations

Usage and deprecation

- In 2011, large usage of GEA-1 and GEA-2
- GEA-1 deprecated in 2013
- In 2021, large usage of GEA-3 (also GEA-0
- Some operators use GEA-2 as main algorithm
- One operator seen using GEA-1 sometimes
- GEA-1 still implemented in recent phones!
- (iPhone 8, Galaxy S9, ...)
- We contacted GSMA and ETSI for responsible disclosure
- New test-case to verify non-implementation of GEA-1
- Plans to deprecate GEA-2

Conclusion

- GEA-1 attack completely practical
- Only 64 bits of known keystream, 2^{40} operations
- 2.5 hours on a laptop today, practical in the 2000's
- GEA-2 attack borderline practical
- Full frame known (12800 bits), 2^{45} operations
- 4 months on a server
- In the early 2000's, internet traffic was mostly in the clear (low TLS use)
- Today, breaking GEA gives some metadata
- Semi-active downgrade attack
[Barkan, Biham \& Keller, C'2003]
- Passive: Record frames encrypted with GEA-3
- Active: force phone to use GEA-1 with same key, recover key

Conclusion

- GEA-1 attack completely practical
- Only 64 bits of known keystream, 2^{40} operations
- 2.5 hours on a laptop today, practical in the 2000's
- GEA-2 attack borderline practical
- Full frame known (12800 bits), 2^{45} operations
- 4 months on a server
- In the early 2000's, internet traffic was mostly in the clear (low TLS use)
- Today, breaking GEA gives some metadata
- Semi-active downgrade attack
[Barkan, Biham \& Keller, C'2003]
- Passive: Record frames encrypted with GEA-3
- Active: force phone to use GEA-1 with same key, recover key

Conclusion

- GEA-1 attack completely practical
- Only 64 bits of known keystream, 2^{40} operations
- 2.5 hours on a laptop today, practical in the 2000's
- GEA-2 attack borderline practical
- Full frame known (12800 bits), 2^{45} operations
- 4 months on a server
- Security by obscurity does not work
- A5/1 - GEA-1
- Mifare
- DVDCSS
- A5/2
- GEA-2
- Keeloq
- ...
- Backdoors affect the security of everybody
- GEA-1 used outside "export" countries
- Downgrade attack as long as weak algorithm are implemented
- Other example: Logjam, exploiting TLS "export" ciphersuites

GEA-1 and GEA-2

Timeline

1999 GPRS specification

2000 GPRS deployment
2001 First commercial 3G deployment (NTT/Japan)
2002 First 3G deployment in Europe
2002 Specification of A5/3 and GEA-3
2007 First iPhone: GPRS-only
2007 3G deployment in 40 countries
2008 iPhone 3G
2009 Rainbow tables for A5/1
[Nohl \& al.]
Plans to speed-up transition to A5/3
2011 Semi-public analysis of GEA-1
GEA-1 and GEA-2 widely used at the time
2013 Deprecation of GEA-1

GEA-1: Reducing memory

- Memory usage can be reduced significantly

> [Amzaleg \& Dinur, EC'22]

- Reduce memory usage from 2^{32} to 2^{24}
- (A, C) and (B) are not independent
- Start by guessing 8 common bits of information
- Further reduce to $2^{19}(4 \mathrm{MB})$ using techniques from 3-XOR cryptanalysis

GEA-2: Time-data tradeoff

- Complexity 2^{45} with full frame (12800 bits)
- Tradeoff with fewer data (blue line)
- Better tradeoff with different attack: 4XOR (stars)
[Amzaleg \& Dinur, EC'22]

Toy example

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

Toy example

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

Toy example

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

Toy example

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

Toy example

$\alpha_{7} \alpha_{1} \oplus \alpha_{2} \alpha_{1} \oplus \alpha_{1} \oplus \alpha_{5} \oplus \alpha_{0} \oplus \alpha_{2}$

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

Toy example

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

Toy example

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

