GEA-2 000000000 Conclusion

Cryptanalysis of GEA-1 and GEA-2

Christof Beierle, Patrick Derbez, Gregor Leander, <mark>Gaëtan Leurent</mark>, Håvard Raddum, Yann Rotella, David Rupprecht, and Lukas Stennes

Journée GDR Sécu

G. Leurent (Inria)

Conclusion

GEA: GPRS Encryption Algorithm

GPRS is the data protocol of 2G telephony (sometimes called 2.5G)

- Improved GPRS: EDGE (sometimes called 2.75G)
- Designed by ETSI SAGE in 1998
- Widely used in the early 2000s
 - The first iPhone didn't support 3G (2008)
 - 3G deployment: 2001-2010-ish
- 2G has been sunset in some countries, but still used in France
 - Fallback when 3G/4G/5G not available
 - Used by some payment terminals

GEA-1 64-bit key, 96-bit state

GEA-2 64-bit, 125-bit state

Partial leak in 2011

Deprecated in 2013

GEA-3 KASUMI (public) designed in 2002

Conclusion 00

2G security

Data

- Encryption of packets between the phone and the antenna
- Algorithms designed in secret in the 1980s and 1990s, not published

Voice

A5/1 64-bit key, 64-bit state

- Partial leak in 1994, Reverse engineered in 1999
- Best attack: < 1 minute</p>
- In practice: rainbow tables (precomputation of 2⁵⁷)

A5/2 64-bit key, 81-bit state

- Reverse engineered in 1999
- Best attack: 2¹⁶ ("export version")
- Deprecated in 2007

A5/3 KASUMI (public) designed in 2002

Cryptanalysis of GEA-1 and GEA-2

Journée GDR Sécu 3 / 20

[Nohl & Melette]

Introduction 0000	<i>GEA-1</i> 0000		GEA-2 000000000		Conclusion 00
	S	tream ciphe	ers		
	m ──→ <mark>E</mark> k	$c = E_k(m)$	→ <mark>D_k</mark> → m	• D	
Encrypt a messa	age with a secret ke	ey k			

Stream cipher

- ▶ Internal state $S \in S$
- State update function $S \rightarrow S$
- Extraction function $f: S \rightarrow \{0, 1\}$
- ▶ Initialization k, IV $\rightarrow S$

$$S^{(0)} = Init(k)$$
 $S^{(i+1)} = Update(S^{(i)})$

 $k, IV \xrightarrow{Init} S \xrightarrow{f} z$

 $z^{(i)} = f(S^{(i)})$

G. Leurent (Inria)

Introduction	GEA-1	GEA-2	Conclusion
0000			

Filter generator

Linear Feedback Shift Register – LFSR (Galois configuration)

State S: n bits (s₀, s₁, ..., s_{n-1})

► Update depending on taps
$$A$$
: $s_i^{(t+1)} = \begin{cases} s_{i+1}^{(t)} \oplus s_0^{(t)} & \text{if } i \in A \\ s_{i+1}^{(t)} & \text{else} \end{cases}$

• Polynomial representation: $Q = X^n + \sum_{i \in A} X^i$

- ▶ If Q is primitive, update corresponds to multiplication by a primitive element
- Maximal period if S ≠ 0

Filter function to extract keystream from internal state (balanced, non-linear)
 Construction used in A5/1, A5/2, Bluetooth E0

G. Leurent (Inria)

Introduction	GEA-1	GEA-2	Conclusion
0000			

Filter generator

Linear Feedback Shift Register – LFSR (Galois configuration)

State S: n bits (s₀, s₁, ..., s_{n-1})

► Update depending on taps
$$A$$
: $s_i^{(t+1)} = \begin{cases} s_{i+1}^{(t)} \oplus s_0^{(t)} & \text{if } i \in A \\ s_{i+1}^{(t)} & \text{else} \end{cases}$

• Polynomial representation: $Q = X^n + \sum_{i \in A} X^i$

- ▶ If Q is primitive, update corresponds to multiplication by a primitive element
- Maximal period if S ≠ 0

- Filter function to extract keystream from internal state (balanced, non-linear)
- Construction used in A5/1, A5/2, Bluetooth E0

G. Leurent (Inria)

Introduction	

GEA-1 •000 GEA-2 000000000 Conclusion

GEA-1 design

- Received specification from a "source"
- Three filter generators
 - A (31 bits)
 - $\hookrightarrow \operatorname{Gen}_A(A)$
 - B (32 bits)
 - $\hookrightarrow \operatorname{Gen}_B(B)$
 - C (33 bits)
 - $\hookrightarrow {\tt Gen}_C(C)$
- Non-linear filtering
 - degree-4 function f

• The keystream is $z = \text{Gen}_A(A) \oplus \text{Gen}_B(B) \oplus \text{Gen}_C(C)$

Introdu	iction

Conclusion

GEA-1 initialization

- Using a NLFSR (non linear)
- 2 Initialize the three LFSRs from S
 - Set A, B, C to zero
 - Clock them 64 times, xor s_i into the feedback function
 - A uses s₀, s₁, ..., s₆₄
 - B uses s₁₆, s₁₇, ..., s₁₅ (shifted by 16 positions)
 - C uses s₃₂, s₃₃, ..., s₃₁ (shifted by 32 positions)

Initialization of A, B, C from S is linear

- S \mapsto A: 64 bit \rightarrow 31 bits, rank 31
- **S** \mapsto **B**: 64 bit \rightarrow 32 bits, rank 32
- **S** \mapsto C: 64 bit \rightarrow 33 bits, rank 33

S \mapsto (A, B, C): 64 bit \rightarrow 96 bits, rank 64

• $S \mapsto (A, C)$: 64 bit \rightarrow 64 bits, rank 40

G. Leurent (Inria)

GEA-1 0●00 GEA-2 000000000 Conclusion

GEA-1 initialization

Initialization of A, B, C from S is linear

- S \mapsto A: 64 bit \rightarrow 31 bits, rank 31
- S \mapsto B: 64 bit \rightarrow 32 bits, rank 32
- S \mapsto C: 64 bit \rightarrow 33 bits, rank 33

S \mapsto (A, B, C): 64 bit \rightarrow 96 bits, rank 64

S \mapsto (A, C) : 64 bit \rightarrow 64 bits, rank 40

G. Leurent (Inria)

Intr	odu	ctior	1

GEA-1 ○●○○ GEA-2 000000000 Conclusion

GEA-1 initialization

- Initialization of A, B, C from S is linear
 - S \mapsto A: 64 bit \rightarrow 31 bits, rank 31
 - S \mapsto B: 64 bit \rightarrow 32 bits, rank 32
 - S \mapsto C: 64 bit \rightarrow 33 bits, rank 33

S \mapsto (A, B, C): 64 bit \rightarrow 96 bits, rank 64

• $S \mapsto (A, C)$: 64 bit \rightarrow 64 bits, rank 40

G. Leurent (Inria)

		of	

Conclusion

Meet-in-the-Middle attack

- There are 2⁴⁰ possible initial states for (A, C)
- There are 2³² possible initial states for B
- The keystream is $z = \text{Gen}_A(A) \oplus \text{Gen}_B(B) \oplus \text{Gen}_C(C)$
 - Split in two independent parts: $Gen_B(B) = z \oplus Gen_A(A) \oplus Gen_C(C)$

Meet-in-the-Middle attack / collision search

O Capture frame with known plaintext, recover z

- **1** For all 2^{32} B, compute $Gen_B(B)$ and store in a hash table
- 2 For all 2^{40} (A, C), compute $z \oplus \text{Gen}_A(A) \oplus \text{Gen}_C(C)$ and look up in the table

Recover the key from the initial state (A, B, C)

- Complexity
 - 64 bits of known keystream
 - 2⁴⁰ Time
 - 2³² Memory

G. Leurent (Inria)

Introduction 0000	<i>GEA-1</i> 000●	<i>GEA-2</i> 00000000	Conclusion 00
	Back	kdoor?	
GEA-1 was likely we	cakened deliberately		
 Mapping S → Having ran Experiments w 	A, C from 64 bits to 64 bit <mark>k 40 is very unlikely</mark> ⁄ith initialization of the sai	ts me type	

- With 1 million experiments, lowest rank found is 55
- Follow-up work to build LFSRs and shift with low rank

[Beierle, Felke & Leander, 2021]

- In the 1990's, cryptography was subjected to export regulation
 - In France, 40-bit security cryptography can be exported after 1998
- The design document states:

"the algorithm should be generally exportable taking into account current export restrictions" "the strength should be optimized taking into account the above requirement"

Other examples of "export" ciphersuites: TLS, A5/2 in GSM

itroduction	<i>GEA-1</i>	<i>GEA-2</i>	Conclus
	0000	●00000000	00
	GEA	-2 design	

Introduction	GEA-1	GEA-2
		0000000

GEA-2 design

Introduction	

Conclusion

Meet-in-the-Middle attack

GEA-2 00000000

 $\blacktriangleright \text{ The keystream is } z = \operatorname{Gen}_A(A) \oplus \operatorname{Gen}_B(B) \oplus \operatorname{Gen}_C(C) \oplus \operatorname{Gen}_D(D)$

Register sizes: 31 (A), 32 (B), 33(C), 29 (D)

- Standard MitM: Gen_A(A) ⊕ Gen_B(B) = z ⊕ Gen_C(C) ⊕ Gen_D(D)
 Complexity ≈ 2⁶³ ((A, B) is 63 bits, (C, D) is 62 bits)
- No unexpected rank loss

Introduction

GEA-2 000000000 Conclusion

Algebraic attack: linearisation

 $\textit{Writing } z^{(i)} = \texttt{Gen}_A^{(i)}(A) \oplus \texttt{Gen}_B^{(i)}(B) \oplus \texttt{Gen}_C^{(i)}(C) \oplus \texttt{Gen}_D^{(i)}(D) \textit{ as a polynomial}$

- 31 + 32 + 33 + 29 = 125 variables
- Each keystream bit z⁽ⁱ⁾ gives an equation
- Small number of possible monomials
 - LFSR update is linear
 - The filtering function f has algebraic degree 4
 - $\sum_{i=1}^{4} {\binom{31}{i}} + {\binom{32}{i}} + {\binom{33}{i}} + {\binom{29}{i}} = 152682$ monomials

Linearisation attack:

- Consider each monomial as an independent variable
- Solve the linear system
- Complexity 152682³ ≈ 2⁵²
- Requires about 152682 bits of keystream z
- Problem: GPRS frame is at most 12800 bits

Toy example

Partial guessing

We can reduce the number of monomial below 12800 by guessing some state bits

For instance: guess 15 bits of A, 15 bits of B, 16 bits of C, 13 bits of D

- Remaining variables: 16 (A) + 17 (B) + 17 (C) + 16 (D)
- ► $\sum_{i=1}^{4} {\binom{16}{i}} + {\binom{17}{i}} + {\binom{17}{i}} + {\binom{16}{i}} = 11468$ monomials (< 12800)
- Solve the remaining system with linear algebra
 - Complexity $\approx 2^{59} \times 12800^3$

			÷	
0)		

GEA-2 000000000 Conclusion

Hybrid Meet-in-the-Middle

Strategy

- **1** Guess parts of A and D
- 2 Find relations that depend only on B, C: $\phi(B) \oplus \psi(C) = \xi(z)$
- Guess 11 bits of A and 9 bits of D
- Write $w^{(i)} = \text{Gen}_A^{(i)}(A) \oplus \text{Gen}_D^{(i)}(D)$ as a polynomial in the remaining variables (20+20)
- ▶ Look for masks m (length 12800) such that m · w₀ ... w₁₂₇₉₉ is constant
 - ► $\sum_{i=1}^{4} \binom{20}{i} + \binom{20}{i} = 12390$ non-constant monomials
 - Using linearisation, space of good masks of dimension 12800 12390 = 410
- Build linear function L from 64 independent masks:
 - ► $z = \text{Gen}_D(D) \oplus \text{Gen}_A(A) \oplus \text{Gen}_B(B) \oplus \text{Gen}_C(C)$
 - $\blacktriangleright L(z) = L(\operatorname{Gen}_D(D)) \oplus L(\operatorname{Gen}_A(A)) \oplus L(\operatorname{Gen}_B(B)) \oplus L(\operatorname{Gen}_C(C))$

known constant $\phi(B)$

 $\psi(C)$

In	tr	01	lС	01	1

Conclusion

Linearization: toy example

	1	a ₀	a ₁	a ₂	a ₀ a ₁	a_0a_2	$a_1 a_2$	b ₀	b_1	b_0b_1
$w_0 =$	1⊕	$a_0\oplus$						b_0		
w ₁ =			$a_1\oplus$			$a_0a_2\oplus$			$b_1\oplus$	b_0b_1
w ₂ =	1⊕	$a_0\oplus$		$a_2\oplus$	$a_0a_1\oplus$					b_0b_1
w ₃ =	1⊕	$a_0\oplus$	$a_1\oplus$		$a_0a_1\oplus$		$a_1a_2\oplus$	$b_0 \oplus$	b_1	
w ₄ =				$a_2\oplus$		$a_0a_2\oplus$		$b_0 \oplus$		b_0b_1
w ₅ =		$a_0\oplus$		$a_2\oplus$			$a_1a_2\oplus$		$b_1\oplus$	b_0b_1
w ₆ =			$a_1\oplus$		$a_0a_1\oplus$	$a_0a_2\oplus$		b_0		
w ₇ =	1⊕	$a_0\oplus$	$a_1\oplus$		$a_0a_1\oplus$		$a_1a_2\oplus$			b_0b_1
w ₈ =	1⊕	$a_0\oplus$		$a_2\oplus$			$a_1a_2\oplus$		$b_1\oplus$	b_0b_1
w ₉ =			$a_1\oplus$	$a_2\oplus$		$a_0a_2\oplus$		$b_0 \oplus$	$b_1\oplus$	b_0b_1
w ₁₀ =			$a_1\oplus$		$a_0a_1\oplus$	$a_0a_2\oplus$			b_1	
w ₁₁ =		$a_0\oplus$	$a_1\oplus$						$b_1\oplus$	b_0b_1
$w_0 \oplus w_2 \oplus w_9 \oplus w_{10} =$	1									
$\mathbf{w}_2 \oplus \mathbf{w}_5 \oplus \mathbf{w}_7 \oplus \mathbf{w}_{11} =$	0									

 $w_5 \oplus w_8 = 1$

Conclusion 00

Hybrid Meet-in-the-Middle

Precomputation

- For each 2²⁰ (a, d) (partial guess of A and D)
 - **1** Compute linear combinations of w independent of remaining (A, D)
 - 2 Deduce functions $\phi_{a,d}$, $\psi_{a,d}$, $\xi_{a,d}$ such that $\phi_{a,d}(B) = \psi_{a,d}(C) \oplus \xi_{a,d}(z)$
- Complexity: $2^{20} \times 12800^3/64 \approx 2^{54.9}$ 64-bit operations

Meet-in-the-Middle attack / collision search

- For each 2²⁰ (a, d) (partial guess of A and D)
 I For all 2³² B, compute φ_{a,d}(B) and store in a hash table
 2 For all 2³³ C, compute ξ_{a,d}(z) ⊕ ψ_{a,d}(C) and look up in the table
 If there is match, recover key candidate from a, B, C, d
- ► Evaluation of φ_{a,d}, ψ_{a,d} as polynomials with amortized cost 4 [BCCCNSY, CHES'10]
 ► Complexity: 2⁵² + 2⁵³ ≈ 2^{53.6} memory access; 2⁵⁴ + 2⁵⁵ ≈ 2^{55.6} 64-bit operations

Improvement: Time-Data Tradeoff

- Classical technique: target one state out of many [Babbage, 1995] [Golic, 1997]
- We target the first 753 states; 753 keystreams of length 12047
 - (A⁽⁰⁾, B⁽⁰⁾, C⁽⁰⁾, D⁽⁰⁾) produces keystream z⁽⁰⁾z⁽¹⁾z⁽²⁾ ...
 - (A⁽¹⁾, B⁽¹⁾, C⁽¹⁾, D⁽¹⁾) produces keystream z⁽¹⁾z⁽²⁾z⁽³⁾ ...
 - (A⁽²⁾, B⁽²⁾, C⁽²⁾, D⁽²⁾) produces keystream z⁽²⁾z⁽³⁾z⁽⁴⁾ ...
- Guess 11 bits of A and 10 bits of D
 - Write $w^{(i)} = \text{Gen}^{(i)}_A(A) \oplus \text{Gen}^{(i)}_D(D)$ as a polynomial in the remaining variables (19+20)
- ▶ Look for masks m (length 12047) such that $m \cdot w^{(0)} \dots w^{(12046)}$ is constant
 - ► $\sum_{i=1}^{4} {19 \choose i} + {20 \choose i} = 11230$ non-constant monomials
 - Using linearisation, space of good masks of dimension 12047 11230 = 817

Filter masks such that $m \cdot z^{(0)} \dots z^{(12046)} = m \cdot z^{(1)} \dots z^{(12047)} = m \cdot z^{(2)} \dots z^{(12048)} = \cdots$

Space of good masks of dimension 817 – 752 = 65 (752 constraints)

Build linear function L from 64 independent masks:

$$z^{(s)}z^{(s+1)} \dots = \operatorname{Gen}_{D}(D^{(s)}) \oplus \operatorname{Gen}_{A}(A^{(s)}) \oplus \operatorname{Gen}_{B}(B^{(s)}) \oplus \operatorname{Gen}_{C}(C^{(s)})$$

► $L(z^{(s)}z^{(s+1)}...) = L(Gen_D(D^{(s)})) \oplus L(Gen_A(A^{(s)})) \oplus L(Gen_B(B^{(s)})) \oplus L(Gen_C(C^{(s)}))$

Introduction	GEA-1	GEA-2	Conclusion
		00000000	

Hybrid Meet-in-the-Middle with Time-Data Tradeoff

Meet-in-the-Middle attack / collision search

For each 2²¹ (a, d) (partial guess of A and D)
 0 Build functions φ_{a,d}, ψ_{a,d}, ξ_{a,d} such that φ_{a,d}(B) ⊕ ψ_{a,d}(C) = ξ_{a,d}(z_sz_{s+1} ...)
 1 For all 2³² B, compute φ_{a,d}(B) and store in a hash table
 2 For all 2³³ C, compute ξ_{a,d}(z) ⊕ ψ_{a,d}(C) and look up in table
 If there is match, recover key candidate from a, B, C, d

- On average, only $2^{21}/753 \approx 2^{11.4}$ guesses until it matches one of the 753 targets
- Complexity: $2^{11.4} \times 2^{33.6} \approx 2^{45}$ memory access; $4 \times 2^{45} \approx 2^{47}$ 64-bit operations

In	tro	duc	tio	n

GEA-2 000000000 Conclusion

Usage and deprecation

- In 2011, large usage of GEA-1 and GEA-2
- GEA-1 deprecated in 2013
- ▶ In 2021, large usage of GEA-3 (also GEA-0 🕏)
 - Some operators use GEA-2 as main algorithm
 - One operator seen using GEA-1 sometimes

GEA-1 still implemented in recent phones!

- (iPhone 8, Galaxy S9, ...)
- We contacted GSMA and ETSI for responsible disclosure
 - New test-case to verify non-implementation of GEA-1
 - Plans to deprecate GEA-2

[Nohl & Melette]

[umlaut report]

Conclusion

Conclusion

- GEA-1 attack completely practical
 - Only 64 bits of known keystream, 2⁴⁰ operations
 - 2.5 hours on a laptop today, practical in the 2000's
- GEA-2 attack borderline practical
 - Full frame known (12800 bits), 2⁴⁵ operations
 - 4 months on a server
- ▶ In the early 2000's, internet traffic was mostly in the clear (low TLS use)
- Today, breaking GEA gives some metadata
- Semi-active downgrade attack

[Barkan, Biham & Keller, C'2003]

- Passive: Record frames encrypted with GEA-3
- Active: force phone to use GEA-1 with same key, recover key

Conclusion

Conclusion

- GEA-1 attack completely practical
 - Only 64 bits of known keystream, 2⁴⁰ operations
 - 2.5 hours on a laptop today, practical in the 2000's
- GEA-2 attack borderline practical
 - Full frame known (12800 bits), 2⁴⁵ operations
 - 4 months on a server
- ▶ In the early 2000's, internet traffic was mostly in the clear (low TLS use)
- Today, breaking GEA gives some metadata
- Semi-active downgrade attack
 - Passive: Record frames encrypted with GEA-3
 - Active: force phone to use GEA-1 with same key, recover key

[Barkan, Biham & Keller, C'2003]

tr	0			Ö	1	

Conclusion

Conclusion

- GEA-1 attack completely practical
 - Only 64 bits of known keystream, 2⁴⁰ operations
 - 2.5 hours on a laptop today, practical in the 2000's
- GEA-2 attack borderline practical
 - Full frame known (12800 bits), 2⁴⁵ operations
 - 4 months on a server

Security by obscurity does not work

- ► A5/1 ► GEA-1
- ► A5/2 ► GEA-2

MifareKeeloq

DVDCSS...

- Backdoors affect the security of everybody
 - GEA-1 used outside "export" countries
 - Downgrade attack as long as weak algorithm are implemented
 - Other example: Logjam, exploiting TLS "export" ciphersuites

GEA-1 and GEA-2

Timeline

- 1999 GPRS specification
- 2000 GPRS deployment
- 2001 First commercial 3G deployment (NTT/Japan)
- 2002 First 3G deployment in Europe
- 2002 Specification of A5/3 and GEA-3
- 2007 First iPhone: GPRS-only
- 2007 3G deployment in 40 countries
- 2008 iPhone 3G
- 2009 Rainbow tables for A5/1 Plans to speed-up transition to A5/3
- 2011 Semi-public analysis of GEA-1 GEA-1 and GEA-2 widely used at the time
- 2013 Deprecation of GEA-1

[Nohl & al.]

[Nohl & Melette]

Backup slides

GEA-1: Reducing memory

Memory usage can be reduced significantly

[Amzaleg & Dinur, EC'22]

- Reduce memory usage from 2³² to 2²⁴
 - (A, C) and (B) are not independent
 - Start by guessing 8 common bits of information

Further reduce to 2¹⁹ (4MB) using techniques from 3-XOR cryptanalysis

Backup slides

GEA-2: Time-data tradeoff

- Complexity 2⁴⁵ with full frame (12800 bits)
- Tradeoff with fewer data (blue line)
- Better tradeoff with different attack: 4XOR (stars)
 [Amzaleg & Dinur, EC'22]

Filter generator

Use variables for initial state

Output can be written as polynomial of the initial state

G. Leurent (Inria)

 $\alpha_4 \alpha_6 \oplus \alpha_2$

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

 $\alpha_5\alpha_7 \oplus \alpha_0\alpha_7 \oplus \alpha_3 \oplus \alpha_0$

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

 $\alpha_6 \alpha_0 \oplus \alpha_1 \alpha_0 \oplus \alpha_0 \oplus \alpha_4 \oplus \alpha_1$

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

 $\alpha_7\alpha_1 \oplus \alpha_2\alpha_1 \oplus \alpha_1 \oplus \alpha_5 \oplus \alpha_0 \oplus \alpha_2$

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

 $\alpha_3\alpha_2 \oplus \alpha_2 \oplus \alpha_6 \oplus \alpha_1 \oplus \alpha_3$

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state

 $\alpha_4\alpha_3 \oplus \alpha_4\alpha_0 \oplus \alpha_3 \oplus \alpha_0 \oplus \alpha_7 \oplus \alpha_2 \oplus \alpha_4$

- Filter generator
- Use variables for initial state
- Output can be written as polynomial of the initial state