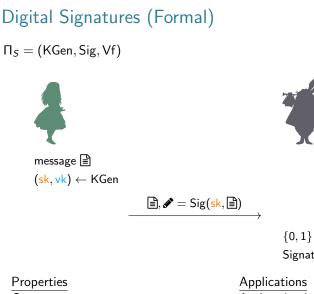
(Sequential) Aggregate Signatures Based on Lattices

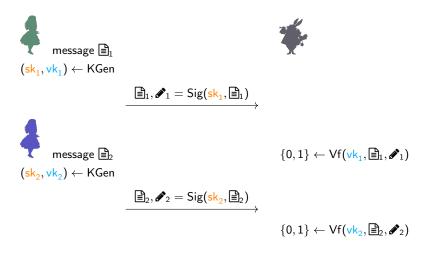
Katharina Boudgoust

Aarhus University, Denmark

Journées Nationales du GdR Sécurité, Paris

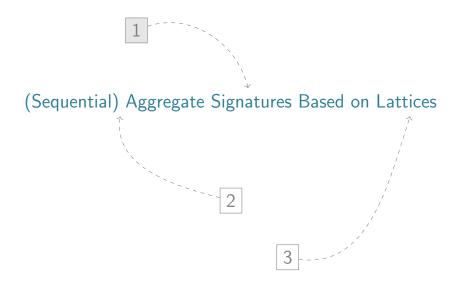

Joint works with Adeline Roux-Langlois & Akira Takahashi

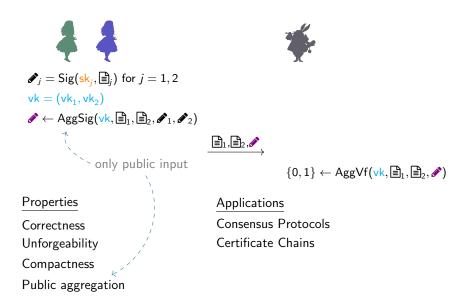
Motivation:


- Digital analogue of handprint signature
- Even more secure?
- Even more functionalities?

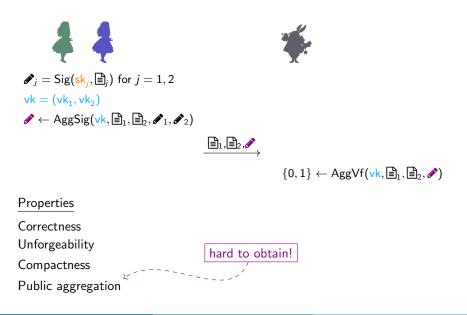
 $\{0,1\} \leftarrow \mathsf{Vf}(\mathsf{vk},\blacksquare, \mathscr{O})$ Signature is valid if $1 \leftarrow Vf$.

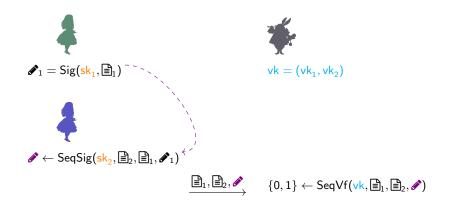
Correctness Unforgeability Authentication


Multiple Signatures


Q: Can we combine both $(\textcircled{1}_{2}, \mathscr{I}_{1})$ and $(\textcircled{1}_{2}, \mathscr{I}_{2})$ to something shorter?

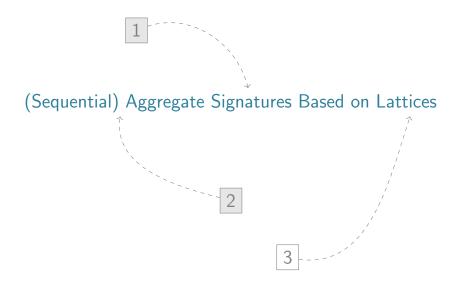
And more generally for $N \gg 2$ many signatures?


Katharina Boudgoust


Aggregate Signatures: AggSig and AggVf [BGLS03]

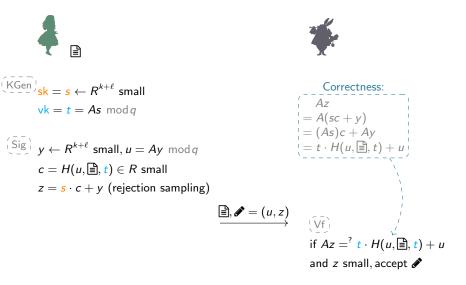
Aggregate Signatures: AggSig and AggVf [BGLS03]

Sequential Aggregation: SeqSig and SeqVf [LMRS04]



Properties Correctness Compactness Unforgeability Applications Certification Chains Authenticated Network Routing Protocols Smart Production Research Question:

Can we construct a (sequential) aggregate signature scheme based on **Euclidean lattices?**


Fail: public aggregation ia.cr/2021/263 accepted at CFAIL'22

Success: sequential aggregation soon on e-print

Signatures on Lattices [Lyu12]

Let $R = \mathbb{Z}[x]/(x^n + 1)$, $R_q = R/qR$ and $A' \leftarrow U(R_q^{k \times \ell})$ defining $A = [A'|I_k]$ and $H: \{0, 1\}^* \rightarrow C \subseteq R$ be a random oracle

Unforgeability Based on Lattices

Theorem ([Lyu12])

Assuming the hardness of the lattice problem Module LWE, the signature is secure against forgeries.

Module Learning With Errors (Module LWE): Distinguish

$$k\left\{ \underbrace{A'}_{\ell}, \underbrace{A'}_{A'} I_{k} \right\} \equiv \begin{bmatrix} c & A' \\ A' & b \end{bmatrix}$$

where $s \leftarrow R^{\ell+k}$ small and $(A', b) \leftarrow U(R_q^{k \times \ell} \times R_q^k)$.

- Presumably post-quantum secure
- Strong security guarantees
- Many cryptographic applications

Public Aggregation - First Attempt

♀ Naive idea: $\checkmark = (u, z) = (u_1 + u_2, z_1 + z_2)$ ↓ (\sqrt{vf}) $Az = t_1c_1 + t_2c_2 + u$ ★ Problem: How to compute c_1, c_2 ? Verifier doesn't know u_1, u_2 ♣ Half-aggregation: $\checkmark = (u_1, u_2, z), z = z_1 + z_2$

KGen !

Sig

Half-Aggregation - Fail!

Single signature: $\mathscr{O} = (u, z)$ Verification: $Az = t \cdot H(u, \square, t) + u$ Smaller signature: $\mathscr{O} = (c, z)$ Verification: $c = H(Az - tc, \square, t)$

Half-aggregation: $\mathscr{O} = (u_1, u_2, z_1 + z_2)$ Trivial: $\mathscr{O} = (c_1, z_1, c_2, z_2)$

 Fail:
 $|\mathscr{P}| > |(u_1, u_2)| > |(c_1, z_1, c_2, z_2)| = |\mathscr{P}|$

 Dilithium 3:
 8.8 KB
 1.6 KB

More details ia.cr/2021/263

Sequential Aggregate Signature

 $sk_1 = s_1, vk_1 = t_1 = As_1$ Sig(sk_1, \textcircled{B}_1): $u_1 = Ay_1$ $c_1 = H(u_1, \textcircled{B}_1, t_1)$ $z_1 = s_1c_1 + y_1 \text{ (rej. sampling)}$ $s_1 = (u_1, z_1)$

 $sk_2 = s_2, vk_2 = t_2 = As_2$ SeqSig(sk_2, $\square_2, \square_1, \mathscr{I}_1$): $u_2 = Ay_2 + u_1$ $c_2 = H(u_2, \square_2, t_2, z_1)$ $z_2 = s_2c_2 + y_2 \text{ (rej. sampling)}$ $\mathscr{I}_2 = (u_2, z_1, z_2)$

SeqVf(vk,
$$\square_1$$
, \square_2 , \mathscr{I}_2): $u_2 + c_2 \cdot t_2 - Az_2 = u_1$
 $\rightarrow \mathscr{I}_1 = (u_1, z_1)$
 $\rightarrow Vf(vk_1, \square_1, \mathscr{I}_1)$

Security

Theorem

If $\Pi_{S} = (KGen, Sig, Vf)$ is secure against forgeries, so is $\Pi_{SAS} = (KGen, Sig, SeqSig, SeqVf)$ secure against forgeries as well.

- $\bullet\,$ Without Forking Lemma $\rightarrow\,$ better tightness
- Recall: Π_S is secure assuming lattice problem Module LWE
- In the Random Oracle Model

Parameters

After N sequential aggregations:

Sequential aggregation: $\mathscr{P} = (u_N, z_1, \cdots, z_N)$ Trivial: $\mathscr{P} = (c_1, \dots, c_N, z_1, \cdots, z_N)$

Starts to be an improvement when

$$nk \log_2 q = |u_N| < |(c_1, \ldots, c_N)| = Nn \log_2 3$$

Dilithium Level 3: N > 69

Related Works and Open Questions

Related work 🗎

- Inter-active aggregation of FSwA-signatures (aka multi-signatures) [DOTT21, BTT22]
- Sequential half-aggregation of GPV-signatures [BB14, WW19]

Open questions ?

• Non-trivial signatures on lattices with public aggregation and security proof

Thank you.

Rachid El Bansarkhani and Johannes Buchmann.

Towards lattice based aggregate signatures.

In *AFRICACRYPT*, volume 8469 of *Lecture Notes in Computer Science*, pages 336–355. Springer, 2014.

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures from bilinear maps. In *EUROCRYPT*, volume 2656 of *Lecture Notes in Computer Science*, pages 416–432. Springer, 2003.

Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. Musig-I: Lattice-based multi-signature with single-round online phase, 2022. Accepted at Crypto 2022.

Ivan Damgård, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi. Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices.

In *Public Key Cryptography (1)*, volume 12710 of *Lecture Notes in Computer Science*, pages 99–130. Springer, 2021.

Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate signatures from trapdoor permutations. In *EUROCRYPT*, volume 3027 of *Lecture Notes in Computer Science*, pages 74–90. Springer, 2004.

Vadim Lyubashevsky.

Lattice signatures without trapdoors.

In *EUROCRYPT*, volume 7237 of *Lecture Notes in Computer Science*, pages 738–755. Springer, 2012.

Zhipeng Wang and Qianhong Wu.

A practical lattice-based sequential aggregate signature.

In *ProvSec*, volume 11821 of *Lecture Notes in Computer Science*, pages 94–109. Springer, 2019.