Modeling differential trail search

Marine Minier - Loria, CARAMBA Team
Joint work with C. Prud'homme, P. Derbrez, S. Delaune, P. Huynh, V. Mollimard
Codes by P. Huynh, S. Delaune and C. Prud'homme
Slides by M. Simard

Marine Minier

GDR Sécu Days | 22 June 2022 | Paris

RoadMap

- Introduction to differential cryptanalysis
- How to model that? With what?
- Step 1
- Step 2
- Results
- Conclusion

Introduction

Thank you to Marc Simard for wonderful slides!

How to Cipher in symmetricc key cryptography?

- Stream Ciphers

- Block Ciphers
- Repeat rounds many many times
- Feistel (as DES): 1 round
- SPN (as AES): 1 round

Cryptography: Theory and Practice
Stinson, CRC Press, 1995

Substitution-Permutation Network (SPN)

Elementary Operations
Linear Operation

Linear Operation

A	B	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

$$
\begin{aligned}
& \forall \mathbf{A} \in \mathbb{F}_{\mathbf{2}}, \\
& \mathbf{A} \oplus \mathbf{A}=\mathbf{0}
\end{aligned}
$$

XOR

Linear Operation

A	B	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Cryptanalysis

We look for the plaintext, or better the used key

Known Plaintext Attacks

Differential Cryptanalysis

Chosen Plaintext Attacks

Differential Cryptanalysis

Elementary Principle

We associated at each pair of differences $\Delta x \rightarrow \Delta y$ a probability p
$p(\Delta x \rightarrow \Delta y)$ is the probability to get the difference Δy as output knowing that the input difference is Δx

Differential Cryptanalysis
 Linear / non linear

- Linear operations:
- $\mathrm{L}(\mathrm{x}) \oplus \mathrm{L}\left(\mathrm{x}^{\prime}\right)=\mathrm{L}\left(\mathrm{x} \oplus \mathrm{x}^{\prime}\right)=\mathrm{L}(\Delta \mathrm{x})$
- with probability 1 !
- Non-linear operations:
- S-boxes
- DDT

Differential Distribution Table (DDT)

Thus, $p(0110 \rightarrow 1110) \neq 0$.

Differential Distribution Table (DDT)
 4-bit S-box Example

Differential Trail Search

Looking for the best differential characteristic

Differential Trail Search

Last round

 chosen suct.

What are we doing?

Know and improve existing attacks
Create new attacks

Why?

To be convinced about the security of current schemes

To elaborate new secure schemes

Modeling

Cryptanalysis Problem

Modeling
Resolution

How to model?

Here are my slides and there are less, less...

What scheme?

The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich \& Sim
CRYPTO 2016

SKINNY

2 versions: SKINNY-64 and SKINNY-128
Key size variable
32 to 56 rounds

H88utto fluctifh?

How to model?

- Two steps
- Step 1, abstract cell differences δx with Boolean variables Δx in $\{0,1\}$
- Find the path with the minimal weight
- Active S-box means $\Delta S x=1$!
- because less active S-box = better proba!
- Then go to Step 2!
- Step 2
- Input the solutions of Step 1
- Then try to instantiate cell differences δx to maximize the overall probability p
- How to do that?

Step 1

Step 1 (remember BOOLEAN): SC

- SC: SubCells: A 4-bit or an 8-bit S-box is applied to each cell of the state.
- At cell level, use the DDT: $\delta x=>\delta y$ with a certain probability
- For Step 1 really simple model
- At Boolean Level: S-box is bijective !
- Thus if $\Delta x=1$, then $\Delta y=1=>$ active S-box
- if $\Delta x=0$, then $\Delta y=0=>$ inactive S-box
- Thus Good news! No effect!

$\Delta x=\Delta y=1$

$\Delta x=\Delta y=0$

Step 1: AC and ART

- AddConstants: Round constants are XORed to the state
- AddRoundTweakey: The first and second rows of all tweakey arrays are extracted and XORed
- No differences are inserted through AC and ART (if yes, more tricky...)
- So, do nothing to model ;o)

Step 1: ShiftRows

- ShiftRows. The rows of the cipher state cell array are rotated to the right (not to the left as in the AES!)
- By 1 for the first row
- By 2 for the second
- By 3 for the third
- So, at cell level: $\delta y[i+j \bmod 4, j]=\delta x[i, j]$
- So, at boolean level: $\Delta y[i+j \bmod 4, j]=\Delta x[i, j]$

Step 1: MixColumns

- MixColumns. Each column of the cipher internal state array is multiplied by the 4×4 binary matrix

$$
\mathbf{M}=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

- Thus,

$$
\begin{gathered}
\delta y[0, j]=\delta x[0, j] \oplus \delta x[2, j] \oplus \delta x[3, j] \\
\delta y[1, j]=\delta x[1, j] \\
\delta y[2, j]=\delta x[1, j] \oplus \delta x[2, j] \\
\delta y[3, j]=\delta x[0, j] \oplus \delta x[2, j]
\end{gathered}
$$

- Same for Boolean variables
- BUT \oplus is not an available operation in the model, so...

Step 1: BUT the XOR?

Byte values

(white $=0$, colored $\neq 0$)
Boolean abstraction

Δ_{A}	Δ_{B}	Δ_{C}
0	0	0
0	1	1
1	0	1
1	1	$?$

$\Delta_{A}+\Delta_{B}+\Delta_{C} \neq 1$

Step 2: Attacker models SK, TK1, TK2, TK3

- Tweakey framework instead key schedule

Step 1: what we have

- 4 models we tested: 1 MILP, 1 MiniZinc, 1 CP, 1 Ad-Hoc (C++)
- Step 1: 2 substeps
- First, Minimize
- Second, Enumerate

- Lessons learnt:
- MinZinc and CP are too slow
- When you deviate from the optimal, MILP becomes too slow too
- Only the Ad-Hoc model is able to provide us what we want
- In TK1 (when differences are authorized also in the key), SKINNY-128 with 14 rounds:
- 3 solutions for optimal value $v=45$
- 897 solutions for $v=v+5=50$
- 137019 solutions for $v=v+10=55$
- 7241601 solutions for $v=59$

Step 2

Where we are now

- With Step 1, we have the differential trails of minimal weights with Boolean variables
- Now, let us try to instantiate those trails to maximize the overall probability p
- Some trails could not be instantiated: they are called non-consistent BUT some are instantiable, we are looking for those trails
- So, take as input all the Step 1 solutions

Step 2: model each SKINNY transformation

- With δx variables with integer domains
- SC: SubCells. An S-box
- If, there is an active S-box, model the DDT:
- ($\delta x, \delta y,-10 . \log _{2}(p(\delta x \rightarrow \delta y))$) under a table constraint
- To discard negative value and keep only integer value
- Objective function becomes: Minimize sum(-10. $\left.\log _{2}(p(\delta x \rightarrow \delta y))\right)$

Step 2: model each SKINNY transformation

- AC and ART: no effect in differential cryptanalysis
- ShiftRows: Direct implementation, just shift to the right
- MixColumns: Direct implementation, just XOR through table constraint
- The XOR is implemented through a table constraint

Step 2: all in 1! Only CP!

Minimize $O b_{j \text { Step } 2}=\sum_{r=1}^{n} \sum_{i=1}^{4} \sum_{j=1}^{4} P_{r, i, j}$ subject to $20 \times n \leq \sum_{r=1}^{n} \sum_{i=1}^{4} \sum_{j=1}^{4} P_{r, i, j} \leq \min \left(70 \times n, O^{*}\right)$

$$
\begin{aligned}
& \delta X_{r, i, j} \in 0 . .255, \delta S B_{r, i, j} \in 0 . .255, P_{r, i, j} \in\{0,20, . ., 70\} \\
& \left\{\begin{array}{l}
\delta X_{r, i, j}=0 \wedge \delta S B_{r, i, j}=0 \wedge P_{r, i, j}=0 \\
\delta X_{r, i, j} \geq 1 \wedge \delta S B_{r, i, j} \geq 1 \wedge P_{r, i, j} \geq 20 \\
\text { if } \Delta X_{r, i, j}=0 \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\text { Sbox } \operatorname{TABLE}\left(\left\langle\delta X_{r, i, j}, \delta S B_{r, i, j}, P_{r, i, j}\right\rangle,\langle\operatorname{SBox}\rangle\right) \text { if } \Delta X_{r, i, j} \neq 0
$$

MixColumns First Row $\delta S B_{r, 0, j}=\delta X_{r+1,1, j}$
MixColumns Second Row

$$
\left\{\begin{array}{l}
\delta S B_{r, 2,(2+j) \% 4}=\delta X_{r+1,2, j} \quad \text { if } \Delta S B_{r, 1,(3+j) \% 4}=0 \\
\delta S B_{r, 1,(3+j) \% 4}=\delta X_{r+1,2, j} \quad \text { if } \Delta S B_{r, 2,(2+j) \% 4}=0 \\
\delta S B_{r, 1,(3+j) \% 4}=\delta S B_{r, 2,(2+j) \% 4 \quad \text { if } \Delta X_{r+1,2, j}=0} \quad \begin{array}{l}
\text { TABLE }\left(\left\langle\delta S B_{r, 1,(3+j) \% 4}, \delta S B_{r, 2,(2+j) \% 4}, \delta X_{r+1,2, j}\right\rangle,\langle\text { XOR }\rangle\right) \quad \text { otherwise }
\end{array}
\end{array}\right.
$$

$\langle\mathrm{XOR}\rangle$ encodes \oplus relation and $\langle\mathrm{SBox}\rangle$ the S-box constraint.

Results

SKINNY-64: few seconds!

Limits: full code book $=2^{64}$ thus $\operatorname{Pr}<2^{-64}$

	Nb Rounds	ObjStep1	Nb sol. Step 1	Step 2 time	Best Pr
SK	7	26	2	1 s	2^{-52}
SK	8	36	17	1 s	$<2^{-64}$
TK1	10	23	1	1 s	2^{-46}
TK1	11	32	2	1 s	$=2^{-64}$
TK2	13	$25 \rightarrow 27$	10	1 s	2^{-55}
TK2	14	31	1	1 s	$<2^{-64}$
TK3	15	$24 \rightarrow 26$	46	2 s	2^{-54}
TK3	16	$27 \rightarrow 31$	87	4 s	$=2^{-64}$
TK3	17	31	2	1 s	$<2^{-64}$

SKINNY-128: push the limits!

Limits: full code book $=2^{128}$ thus $\operatorname{Pr}<2^{-128}$

	Nb Rounds	$O b j_{\text {step } 1}$	Nb sol. Step 1	Step 2 time	Best Pr
SK	9	$41 \rightarrow 43$	52	16 s	2^{-86}
SK	10	$46 \rightarrow 48$	48	11 s	2^{-96}
SK	11	$51 \rightarrow 52$	15	4 s	2^{-104}
SK	12	$55 \rightarrow 56$	11	6 s	2^{-112}
SK	13	$58 \rightarrow 61$	18	2 m 27 s	2^{-123}
SK	14	$61 \rightarrow 63$	6	21 s	$\leq 2^{-128}$
TK1	8	$13 \rightarrow 16$	14	4 s	2^{-33}
TK1	9	$16 \rightarrow 20$	6	3 s	2^{-41}
TK1	10	$23 \rightarrow 27$	6	4 s	2^{-55}
TK1	11	$32 \rightarrow 36$	531	37 s	2^{-74}
TK1	12	$38 \rightarrow 46$	186482	213 m	2^{-93}
TK1	13	$41 \rightarrow 53$	2385482	2 days	$2^{-106.2}$
TK1	14	$45 \rightarrow 59$	11518612	20 days	2^{-120}
TK1	15	$49 \rightarrow 63$	7542053	25 days	$\leq 2^{-128}$
TK2	9	$9 \rightarrow 10$	7	3 s	2^{-20}
TK2	10	$12 \rightarrow 17$	132	11 s	$2^{-34.4}$
TK2	11	$16 \rightarrow 25$	4203	6 m	$2^{-51.4}$
TK2	12	$21 \rightarrow 35$	1922762	512 m	$2^{-70.4}$
TK2	19	$52 \rightarrow 63$	772163	280 m	$\leq 2^{-128}$
TK3	10	6	3	3 s	2^{-12}
TK3	11	10	3	10 s	2^{-21}
TK3	12	$13 \rightarrow 17$	373	1 h	$2^{-35.7}$
TK3	13	$16 \rightarrow 25$	34638	85 h	$2^{-51.8}$
TK3	23	$55 \rightarrow 63$	47068	11 bDR S\&cari2y Days	

SK 14 rounds, Few minutes (vs 15 days before)!

But 25 days for TK1 and TK2 the holy Grail even with 128 threads and a different model...

The best TK2 solution has 15 rounds and a probability of $2^{-124.2}$ BUT maybe not optimal...

TK3 only results with 1 active byte in each lane

Conclusion

All those results were accepted to ACNS 2021
Or partly available: https://hal.archives-ouvertes.fr/hal-03040548
Part of the ANR Decrypt project
Results on AES and Rijndael [AI 20, Africacrypt 22]
Results on Boomerang attacks (SKINNY, WARP, Rijndael...) [FSE 21,
FSE 22, submitted]
Results on Division property on TRIVIUM [SAC 21]
Dedicated tool: TAGADA [CP 21]
Dedicated constraint: AbstractXOR [CP 20]

And because I love that

- The best TK1 differential characteristic on 14 rounds with a probability of $?^{-120}$

Thiank You for your attention!

Round	$\delta X_{i}=X_{i} \oplus X_{i}^{\prime}$ (before SB)	$\delta S B X_{i}$ (after SB)	$\delta T K 1_{i}$	Pr (States)
$i=1$	02000002000002000002000000020040	08000008000008000008000000080004	00000000000000000100000000000000	$2^{-2 \cdot 6}$
2	00000400080000080000000008000000	00000100100000100000000010000000	00000100000000000000000000000000	$2^{-2.4}$
3	00000010000000001010000000000000	00000040000000004040000000000000	00000000000000000000010000000000	$2^{-2.3}$
4	00004000000000400000404000004000	00000400000000040000040400000400	00000000010000000000000000000000	$2^{-2.5}$
5	04000400000004000005000004040400	05000500000001000005000005050500	00000000000000000000000001000000	$2^{-3 \cdot 6} 2^{-2}$
6	00050500050005000000000405000505	00050500010001000000000505000505	00000000000001000000000000000000	$2^{-3.6} 2^{-2.2}$
7	00050005000505000004000000000500	00050005000505000005000000000500	00000000000000000000000000000100	$2^{-3.6}$
8	00000000000500050000050000050000	00000000000100050000050000050000	00000000000100000000000000000000	$2^{-3-3} 2^{-2}$
9	00000000000000000000000005000000	00000000000000000000000005000000	00000000000000000000000000010000	2^{-3}
10	00000005000000000000000000000000	00000001000000000000000000000000	00000001000000000000000000000000	2^{-2}
11	00000000000000000000000000000000	00000000000000000000000000000000	00000000000000000000000100000000	-
12	00000000000000000000000000000000	00000000000000000000000000000000	00000000000000010000000000000000	
13	00000000000000000100000000000000	00000000000000002000000000000000	00000000000000000000000000000001	2^{-2}
14	00002000000000000000200000002000	00008000000000000000800000008000	00010000000000000000000000000000	$2^{-2 \cdot 3}$

Bibliography

Cryptography: Theory and Practice
Stinson
CRC Press, 1995
Modern Cryptanalysis: Techniques for Advanced Code Breaking
Swenson
Wiley, 2008
The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS
Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich \& Sim
CRYPTO 2016
MILP Modeling for (Large) S-boxes to Optimize Probability of Differential Characteristics Abdelkhalek, Sasaki, Todo, Tolba \& Youssef ToSC 2017

